Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Stabilizatory napięcia

Porównanie Sturm PS93100R 10 kVA vs Forte TVR-10000VA 10 kVA

Dodaj do porównania
Forte TVR-10000VA 10 kVA
Sturm PS93100R 10 kVAForte TVR-10000VA 10 kVA
od 536 zł
Produkt jest niedostępny
od 732 zł
Produkt jest niedostępny
TOP sprzedawcy
Typ stabilizatoraz przekaźnikiemz przekaźnikiem
Napięcie wejściowe230 V (1 faza)230 V (1 faza)
Moc10 kVA10 kVA
Specyfikacja
Zakres napięcia wejściowego130 – 260 V140-260 V
Dokładność napięcia wyjściowego (±)8 %8 %
Prędkość wyzwalania12 ms7 ms
Sprawność97 %
Woltomierzanalogowyanalogowy
Gniazdka elektryczne
Połączenie klemowe
Poziomy ochrony
Ochrona
 
przed zwarciem
 
przed zbyt wysokim / niskim napięciem
przed przegrzaniem
przed zwarciem
przed przeciążeniem
przed zbyt wysokim / niskim napięciem
Dane ogólne
Instalacja
wolnostojący
wolnostojący
Chłodzeniebiernebierne
Stopień ochrony IP20
Uchwyt do przenoszenia
Wymiary256x220x410 mm
Waga15 kg19.55 kg
Data dodania do E-Katalogluty 2017marzec 2014

Zakres napięcia wejściowego

Zakres napięcia na wejściu stabilizatora, przy którym może on normalnie pracować i dostarczać do obciążenia stałe napięcie 230 lub 400 V (w zależności od liczby faz, patrz wyżej). Im szerszy jest ten zakres, im bardziej uniwersalne jest urządzenie, tym większe skoki napięcia może tłumić bez przekraczania standardowych parametrów pracy. Należy jednak pamiętać, że parametr ten nie jest jedynym, a nawet nie głównym wskaźnikiem jakości pracy: wiele zależy również od dokładności napięcia wyjściowego i szybkości wyzwalania (patrz oba punkty poniżej ).

Należy również pamiętać, że niektóre modele mogą mieć kilka trybów pracy (na przykład z wyjściem 230 V, 230 V lub 240 V). W tym przypadku, w charakterystyce wskazuje się „całkowity” zakres napięcia wejściowego, od najniższego minimum do najwyższego maksimum; rzeczywiste zakresy dla poszczególnych trybów będą się różnić.

Ponadto istnieją stabilizatory, które mogą pracować poza standardowym zakresem napięcia wejściowego: przy niewielkim odchyleniu poza jego granice urządzenie zapewnia stosunkowo bezpieczne wskaźniki wyjściowe (również przy pewnych odchyleniach od nominalnego 230 lub 400 V), jeśli spadek lub wzrost staje się krytyczny, włącza się odpowiednia ochrona (patrz poniżej).

Prędkość wyzwalania

Prędkość, z którą stabilizator reaguje na zmianę napięcia wejściowego. Określa ją czas, który upływa od momentu skoku napięcia do momentu, gdy urządzenie w pełni dostosuje się do nowych parametrów, a prąd wyjściowy będzie odpowiadał standardowi 230 lub 400 V (w zależności od liczby faz, patrz wyżej). W związku z tym, im krótszy czas wyzwalania, tym lepiej funkcjonuje stabilizator, tym mniejsze prawdopodobieństwo, że przepięcie znacząco wpłynie na podłączony sprzęt. Z drugiej strony, nie wszystkie rodzaje urządzeń elektrycznych są wrażliwe na prędkość - dla niektórych ważniejsza jest płynność regulacji lub dokładność napięcia (patrz wyżej); a sama w sobie, duża prędkość może znacząco wpłynąć na cenę urządzenia. Dlatego wybierając pod względem tego parametru, warto wziąć pod uwagę, jakie urządzenia planuje się podłączać przez stabilizator.

Sprawność

Sprawność stabilizatora to procentowy stosunek ilości energii elektrycznej na wyjściu z urządzenia do ilości energii na wejściu. Innymi słowy, sprawność opisuje, jaka część energii otrzymanej z sieci jest przekazywana przez urządzenie do podłączonego obciążenia bez strat. A straty podczas pracy będą nieuniknione - po pierwsze żaden transformator nie jest doskonały, a po drugie obwody sterujące stabilizatora również wymagają pewnej ilości energii do działania. Jednocześnie wszystkie te koszty są dość niskie, a nawet w stosunkowo prostych nowoczesnych modelach sprawność może sięgać 97-98%.

Połączenie klemowe

Obecność co najmniej dwóch par zacisków w strukturze stabilizatora - na wejściu i na wyjściu. W przeciwieństwie do gniazd, które są przeznaczone do częstych podłączeń i rozłączeń, połączenie zaciskowe jest zaprojektowane tak, aby trwale przymocować przewody - z grubsza mówiąc "przymocowane - zaciśnięte - zapomniane". Nie oznacza to bezpośredniego podłączenia urządzeń elektrycznych, zwykle energia z zacisków idzie dalej do sieci energetycznej i jest już przez nią rozprowadzana do osobnych gniazd w pomieszczeniu. W związku z tym ta opcja jest typowa dla potężnych modeli (średnio od 3 kVA i więcej, patrz „Moc”), które są przeznaczone do zainstalowania w jednym miejscu jako stały element sieci energetycznej. Często takie stabilizatory w ogóle nie mają własnych gniazd - tylko zaciski.

Ochrona

Przed przegrzaniem. Zabezpieczenie zapobiegające krytycznemu wzrostowi temperatury poszczególnych elementów stabilizatora — np. w przypadku przeciążenia, zwarcia lub awarii układu chłodzenia. Po przekroczeniu określonej wartości temperatury wyłącza urządzenie, aby uniknąć awarii i pożaru. Takie układy są szczególnie ważne w przypadku stabilizatorów półprzewodnikowych - tyrystorowych i triakowych(patrz wyżej). W niektórych modelach funkcja ta może być uzupełniona sygnałem o wzroście temperatury - jest wyzwalany w temperaturze zbliżonej do krytycznej.

Przed zakłóceniami o wysokiej częstotliwości. Zabezpieczenie to tłumi zakłócenia o wysokiej częstotliwości wchodzące na wejście, zapobiegając ich wpływowi na pracę urządzeń podłączonych do stabilizatora. Takie zakłócenia mogą wystąpić na przykład z silników elektrycznych, spawarek itp. Na przykład w systemach audio zniekształcenia o wysokiej częstotliwości powodują nieprzyjemne buczenie z głośników. Zabezpieczenie przed zakłóceniami o wysokiej częstotliwości odfiltrowuje te zniekształcenia, zapewniając gładką falę sinusoidalną na wyjściu.

Przed zwarciem. System zabezpieczający stabilizator w przypadku zwarcia w podłączonym obciążeniu. Zwarcie to sytuacja, w której rezystancja w obwodzie zbliża się do zera; prowadzi to do gwałtownego wzrostu natężenia prądu, przeciążania...sieci energetycznej i samego stabilizatora, a także stwarza ryzyko awarii, a nawet pożaru. Aby uniknąć nieprzyjemnych konsekwencji, przewidywana jest odpowiednia ochrona: odłącza obciążenie w przypadku znacznego przekroczenia w nim prądu. Funkcja ta jest prawie obowiązkowa we współczesnych stabilizatorach.

Przed przeciążeniem. System bezpieczeństwa na wypadek przeciążenia stabilizatora - czyli sytuacja, gdy całkowita moc przyłączeniowa staje się większa niż odpowiednie wskaźniki samego urządzenia (patrz "Moc"). Przyczyną takiej sytuacji może być np. włączenie dodatkowego obciążenia lub zmiana trybu pracy jednego z istniejących obciążeń. W przeciwieństwie do opisanego powyżej zwarcia, podczas przeciążenia wszystkie urządzenia elektryczne działają w trybie zwykłym, tryb pracy samego stabilizatora nie jest zwykły - co może doprowadzić do jego awarii, a nawet pożaru. Aby tego uniknąć, stosuje się zabezpieczenie przed przeciążeniem. Jego konkretna realizacja może się różnić. W niektórych modelach obciążenie jest wyłączane natychmiast, w innych – jakiś czas po sygnale ostrzegawczym, co daje użytkownikowi możliwość zmniejszenia zużycia energii i uniknięcia aktywacji systemu.

Przed nadmiernym / zbyt niskim napięciem. Jest to system, chroniący urządzenie przed zbyt niskim lub zbyt wysokim napięciem wejściowym. Znaczne przekroczenie zakresu napięcia wejściowego (patrz wyżej) jest niebezpieczne nie tylko ze względu na ryzyko uszkodzenia samego stabilizatora: w takich warunkach możliwości urządzenia nie wystarczają do pełnowartościowego zabezpieczenia podłączonego obciążenia, co może skutkować problemami. A funkcja ta zapobiega takim konsekwencjom: jeśli napięcie wejściowe przekroczy dopuszczalne wartości (mogą być szersze od wartości roboczych, patrz „Zakres napięcia wejściowego”), stabilizator jest odłączany od sieci. Jednocześnie niektóre jego funkcje mogą nadal działać - na przykład woltomierz, który pozwala na ocenę „stanu rzeczy” w sieci na wejściu. W niektórych modelach dostępna jest funkcja automatycznego włączania, gdy napięcie powraca do granic roboczych.

Stopień ochrony IP

Stopień ochrony wewnętrznych elementów stabilizatora przed różnymi niepożądanymi czynnikami z zewnątrz - przede wszystkim przed dostaniem się wilgoci i ciałami obcymi. Norma IP ("ingress protection", czyli ochrona przed przenikaniem) jest używana do opisu ochrony zapewnianej przez obudowę.

W znakowaniu zgodnie z tym standardem zwykle używa się dwóch cyfr - na przykład IP54. Pierwsza cyfra opisuje stopień ochrony przed różnymi ciałami twardymi (włącznie z piaskiem i pyłem). Jego konkretne wartości mogą wyglądać następująco:

1 - ochrona przed przedmiotami o rozmiarze 50 mm lub większym (dla porównania: przeciętna męska pięść nie przedostanie się nawet przez największy otwór w takiej obudowie).
2 - przed przedmiotami o rozmiarze 12,5 mm lub większym (porównywalnych z grubością palca dłoni).
3 - przed przedmiotami o rozmiarze 2,5 mm lub większym (możemy mówić o ochronie przed przypadkowym dostaniem się większości standardowych narzędzi).
4 - przed przedmiotami o rozmiarze 1 mm lub większym (na przykład większość przewodów).
5 - średni stopień ochrony przed pyłem (dopuszcza się dostanie do środka pewnej ilości pyłu, co nie wpływa na działanie urządzenia).
6 - maksymalny stopień ochrony przed pyłem (jego wnikanie jest praktycznie wykluczone).

Druga cyfra odpowiednio opisuje odporność na wilgoć:

1 - minimalny stopień ochrony - urządzenie umieszczone w pozycji roboczej jest odporne na pojedyncze krople, spad...ające na nie pionowo.
2 - dopuszczane jest dostanie się pionowych kropel, gdy urządzenie jest odchylone od pozycji roboczej o nie więcej niż 15 °.
3 - dopuszczane jest dostanie się bryzg, padających pod kątem do 60° od pionu; ochrona przed deszczem.
4 - odporność na bryzgi z dowolnego kierunku; ochrona przed deszczem z wiatrem.
5 - odporność na strumienie wody; ochrona przed ulewnymi deszczami, burzami.
6 - dopuszczane jest krótkotrwałe przedostanie się dużych ilości wody - na przykład, gdy uderzy fala.
7 - możliwość krótkotrwałego zanurzenia pod wodą na płytkiej głębokości (do 1 m).
8 - możliwość pracy na głębokości 1 m lub większej.

Jedną z cyfr można zastąpić literą X - zwykle oznacza to, że urządzenie nie ma oficjalnej certyfikacji dla odpowiedniego rodzaju ochrony. W niektórych przypadkach sugeruje to, że w ogóle nie ma takiej ochrony - na przykład obudowa IP2X najprawdopodobniej w ogóle nie jest przeznaczony do wnikania wody. Może być jednak odwrotnie – na przykład IPX7: obudowa z możliwością zanurzenia pod wodą z pewnością będzie dobrze chroniona przed pyłem, nawet jeśli nie jest to oficjalnie zadeklarowane.

Oczywiście warto wybrać według tego parametru, przede wszystkim biorąc pod uwagę oczekiwane warunki eksploatacji: np. wodoodporność jest bezużyteczna w suchym zapleczu (będzie to tylko kosztować dodatkowe pieniądze), lecz w wilgotnej piwnicy taka obudowa może być bardzo odpowiednia. Należy jednak pamiętać, że żadna ochrona nie daje absolutnych gwarancji i nie eliminuje konieczności przestrzegania zasad bezpieczeństwa.
Dynamika cen
Forte TVR-10000VA często porównują