Polska
Katalog   /   Telefony i komunikacja   /   Telefony i akcesoria   /   Telefony komórkowe

Porównanie Nokia 105 2019 1 SIM vs Nokia 130 1 SIM

Dodaj do porównania
Nokia 105 2019 1 SIM
Nokia 130 1 SIM
Nokia 105 2019 1 SIMNokia 130 1 SIM
Porównaj ceny 4
od 152 zł
Produkt jest niedostępny
TOP sprzedawcy
Wyświetlacz
Charakterystyka wyświetlacza
1.77 "
160x120
113 ppi
1.8 "
160x128
114 ppi
Część sprzętowa
System operacyjnyautorskiautorski
Slot na karty pamięcibrakmicroSD
Maks. pojemność karty32 GB
Rodzaj karty SIMmicro-SIM
Komunikacja i złącza
Łączność
GSM
GSM
Komunikacja
 
Bluetooth
Złącza
microUSB
mini Jack (3.5 mm)
wyjście słuchawkowe u góry
microUSB
mini Jack (3.5 mm)
 
Funkcje i nawigacja
Funkcje i możliwości
Radio FM
latarka
Radio FM
latarka
Zasilanie
Pojemność baterii800 mAh1020 mAh
Szybkie ładowaniebrakbrak
Ładowanie bezprzewodowe
Dane ogólne
Materiał ramki / pokrywytworzywo sztuczne/tworzywo sztucznetworzywo sztuczne
Tylna pokrywamatowa
Wymiary (SxDxW)119x49.2x14.4 mm106x45.5x13.9 mm
Waga74 g69 g
Kolor obudowy
Data dodania do E-Katalogpaździernik 2019sierpień 2014

Charakterystyka wyświetlacza

Specyfikacja głównego (i najczęściej jedynego) wyświetlacza w urządzeniu.

Oprócz podstawowych parametrów - takich jak przekątna, rozdzielczość (ze względu na nią ekrany są umownie podzielone na HD, Full HD, href="/list/122/pr-49321/">2K i więcej), typ matrycy (najczęściej IPS, OLED, AMOLED, Super AMOLED, Dynamic AMOLED,), na tej liście mogą być podawane bardziej specyficzne cechy. Wśród nich - kształt powierzchni (płaska lub zakrzywiona), obecność i wersja Gorilla Glass (w tym najpopularniejsza v6 i Victus), obsługa HDR i częstotliwość odświeżania (częstotliwość wyższa niż 60 Hz jest uważana za wysoką, mianowicie 90 Hz, 120 Hz i 144 Hz). Oto bardziej szczegółowy opis specyfikacji, które są istotne dla współczesnych wyświetlaczy: — Przekątna. Tradycyjnie przekątna ekranu jest podawana w calach. Większy wyświetlacz jest wygodniejszy w obsłudze: pomieszczą więcej...informacji, a sam obraz jest lepiej czytelny. Minusem dużej przekątnej jest zwiększenie wymiarów urządzenia. Obecnie smartfony z ekranami 5" i mniejszymi są uważane za małe>. 5.6 – 6" i do 6.5" - to już jest średni format. Poza tym sporo modeli ma rozmiar 6.5". Klasyczne telefony bez ekranów dotykowych nie potrzebują dużej przekątnej - zwykle nie przekracza ona 3".

— Rozdzielczość. Rozdzielczość ekranu określają jego wymiary (w pionie i poziomie) w pikselach. Im większe są te wymiary (przy tej samej przekątnej), tym bardziej szczegółowy i wygładzony jest obraz, tym mniej widoczne są poszczególne piksele. Z drugiej strony zwiększenie rozdzielczości wpływa zarówno na koszt samego wyświetlacza, jak i wymagania sprzętowe telefonu. Warto też zauważyć, że ta sama rozdzielczość wygląda inaczej na ekranach o różnych rozmiarach; dlatego przy ocenie szczegółowości warto wziąć pod uwagę nie tylko parametr ten, lecz także ilość PPI (patrz poniżej).

— PPI. Zagęszczenie pikseli na ekranie urządzenia. Określa się na podstawie liczby punktów na cal (points per inch) - liczby pikseli na każdy poziomy lub pionowy odcinek o rozmiarze 1". Wskaźnik ten zależy jednocześnie od przekątnej i rozdzielczości, lecz ostatecznie jest to liczba PPI, która określa, jak wygładzony i szczegółowy jest obraz na wyświetlaczu. Dla porównania należy zaznaczyć, że w odległości około 25-30 cm od oczu zagęszczenie 300 PPI lub większe sprawia, że ​​poszczególne piksele są prawie niewidoczne dla osoby z normalnym wzrokiem, obraz jest postrzegany jako całościowy, przy większych odległościach podobny efekt jest zauważalny nawet przy mniejszym zagęszczeniu pikseli.

— Typ matrycy. Technologia, według której wykonana jest matryca ekranu. Parametr ten jest określa się tylko dla stosunkowo zaawansowanych wyświetlaczy, które przewyższają najprostsze ekrany LCD telefonów przyciskowych. Najbardziej rozpowszechnione w naszych czasach są następujące typy matryc:
  • IPS. Najbardziej popularna technologia, stosowana w ekranach współczesnych smartfonów. Zapewnia bardzo przyzwoitą jakość obrazu, kąty widzenia oraz czas reakcji, choć pod względem tych parametrów nieco ustępuje bardziej zaawansowanym wariantom (patrz poniżej). Z drugiej strony IPS ma również swoje zalety: trwałość, równomierne zużycie, a także dość niski koszt. Dzięki temu takie ekrany można spotkać we wszystkich kategoriach smartfonów - od niedrogich po topowe.
  • AMOLED. Technologia oparta na organicznych diodach elektroluminescencyjnych (OLED) opracowana przez firmę Samsung. Jedną z kluczowych różnic między takimi matrycami a bardziej tradycyjnymi wyświetlaczami jest to, że nie wymagają one zewnętrznego podświetlenia: każdy piksel sam jest źródłem światła. Z tego powodu zużycie energii takiego ekranu zależy od cech wyświetlanego obrazu, lecz generalnie okazuje się dość niskie. Ponadto matryce AMOLED wyróżniają się szerokimi kątami widzenia, doskonałymi wskaźnikami jasności i kontrastu, wysoką jakością kolorów oraz krótkim czasem reakcji. Dzięki temu takie ekrany nadal są wykorzystywane we współczesnych smartfonach, pomimo pojawienia się bardziej zaawansowanych technologii; można je spotkać nawet w topowych modelach. Główną wadą tej technologii jest stosunkowo wysoki koszt i nierównomierne zużycie pikseli: piksele, które pracują dłużej i częściej przy dużej jasności - wypalają się szybciej. Zwykle jednak efekt ten staje się zauważalny dopiero po kilku latach intensywnego użytkowania - okresie porównywalnym z żywotnością samego smartfona.
  • AMOLED (LTPO). Zaawansowana wersja paneli AMOLED z możliwością dynamicznego dostosowywania częstotliwości odświeżania w zależności od wykonywanych zadań. Skrót LTPO (Low Temperature Polycrystalline Oxid) oznacza „niskotemperaturowy tlenek polikrystaliczny”. Za tym terminem kryje się połączenie tradycyjnej technologii LTPS i cienkiej warstwy tlenku TFT z dodatkiem hybrydowo-tlenkowego krzemu polikrystalicznego do sterowania obwodami przełączającymi. Panele AMOLED (LTPO) zmniejszają zużycie energii przez gadżet o rząd wielkości. Tak więc przy wykonywaniu aktywnych czynności ekran urządzenia stosuje maksymalną lub wysoką częstotliwość odświeżania, a przy przeglądaniu zdjęć lub czytaniu tekstu wyświetlacz zmniejsza częstotliwość odświeżania do minimum.
  • Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED. Jednym z kluczowych ulepszeń jest to, że ekrany Super AMOLED nie mają szczeliny powietrznej między warstwą czujnika a znajdującym się poniżej wyświetlaczem. Umożliwiło to dalsze zwiększenie jasności i jakości obrazu, zwiększenie szybkości i niezawodności czujnika, a jednocześnie zmniejszenie zużycia energii. Wady takich matryc są takie same jak w przypadku oryginalnych AMOLED-ów. Ogólnie są one dość rozpowszechnione; większość smartfonów z podobnymi ekranami należy do średniej i najwyższej półki, lecz są też spotykane niedrogie modele.
  • OLED. Różnorodne typy matryc, oparte na wykorzystaniu organicznych diod LED; w rzeczywistości - są to analogi AMOLED i Super AMOLED, produkowane nie przez Samsunga, lecz przez inne firmy. Konkretne cechy takich ekranów może się różnić, natomiast większość z nich z jednej strony jest droższa od popularnych IPS, z drugiej zapewnia wyższą jakość obrazu (m.in. jasność, kontrast, kąty widzenia i odwzorowanie kolorów), gdyż również zużywają mniej energii i mają małą grubość. Głównymi wadami ekranów OLED są wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy wyświetlaniu statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (panel powiadomień, przyciski ekranowe itp.).
  • OLED (polimerowy). Ekrany oparte na organicznych diodach elektroluminescencyjnych (OLED), w których dla podstawy nie używa się szkła, tylko przezroczysty materiał polimerowy. Podkreślmy, że chodzi o podstawę matrycy; od góry pokryta jest ona tym samym szkłem, co w innych typach wyświetlaczy. Tak czy inaczej, taka konstrukcja oferuje kilka zalet w porównaniu z tradycyjnymi matrycami „szklanymi”: zapewnia dodatkową odporność na uderzenia i doskonale nadaje się do tworzenia zakrzywionych wyświetlaczy. Z drugiej strony, pod względem właściwości optycznych, tworzywo sztuczne jest gorsze od szkła; zatem ekrany tego typu często ustępują jakością obrazu swoim „rówieśnikom”, wykonanym w tradycyjnej technologii OLED, a przy podobnej jakości obrazu są znacznie droższe.
  • OLED (LTPO). Matryce OLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. W grach ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do wartości maksymalnych, zaś przy oglądaniu statycznych obrazów obniżają ją do minimum (od 1 Hz). Sercem tej technologii jest tradycyjne podłoże LTPS z cienką warstwą TFT nad podstawą tranzystorów cienkowarstwowych. Możliwość kontrolowania przepływu elektronów zapewnia dynamiczną kontrolę nad częstotliwością odświeżania. Przewagą konkurencyjną OLED (LTPO) jest zmniejszone zużycie energii.
Ponadto ekrany we współczesnych smartfonach mogą być wykonywane przy użyciu następujących technologii:
  • PLS. Odmiana technologii IPS stworzona przez firmę Samsung. Pod pewnymi względami - w szczególności pod względem jasności, kontrastu i kątów widzenia - przewyższa oryginał, a jednocześnie jest tańsza w produkcji i pozwala tworzyć elastyczne wyświetlacze. Jednak z wielu powodów ta technologia nie zyskała zbyt dużej popularności.
  • Super AMOLED Plus. Dalszy rozwój opisanej powyżej technologii Super AMOLED. Pozwala tworzyć jeszcze jaśniejsze, bardziej kontrastowe, a jednocześnie cieńsze i energooszczędne ekrany. Jednak najczęściej te ekrany są obecnie nazywane po prostu „Super AMOLED”, bez przedrostka „Plus”.
  • Dynamiczny AMOLED. Kolejne ulepszenie AMOLED wprowadzone w 2019 roku. Głównymi cechami takich matryc jest zwiększona jasność bez znaczącego wzrostu zużycia energii, a także 100% pokrycie przestrzeni barwnej DCI-P3 oraz kompatybilność z HDR10+; szczególnie dwa ostatnie szczegóły pozwalają na najwyższą jakość odtwarzania współczesnych filmów wysokobudżetowych na takich ekranach. Główną wadą Dynamic AMOLED jest wysoka cena; więc takie matryce spotyka się głównie w topowych modelach.
  • Super Clear TFT. Wspólne opracowanie Samsunga i Sony, które pojawiło się jako wymuszona alternatywa dla matryc Super AMOLED (zapotrzebowanie na nie kiedyś znacznie przekraczało możliwości produkcyjne). Co prawda jakość obrazu Super Clear TFT jest nieco niższa - lecz w produkcji takie matryce są znacznie prostsze i tańsze, a pod względem właściwości wciąż przewyższają większość ekranów IPS. Jednak w naszych czasach technologia ta jest rzadko używana, ustępując AMOLED-owi w różnych wersjach.
  • Super LCD. Kolejna alternatywa dla różnych typów technologii AMOLED; stosowana głównie w smartfonach HTC. Podobnie jak Super AMOLED, takie ekrany nie mają dodatkowej szczeliny powietrznej, co wpływa pozytywnie zarówno na jakość obrazu, jak i na dokładność sensora. Istotną zaletą Super LCD jest jego dobra energooszczędność, zwłaszcza przy wyświetlaniu jasnej bieli; lecz pod względem ogólnego nasycenia kolorów (w tym czerni) ta technologia jest zauważalnie gorsza od AMOLED.
  • LTPS. Zaawansowany typ matryc TFT, stworzony w oparciu o tzw. niskotemperaturowy krzem polikrystaliczny. Umożliwia on łatwe tworzenie ekranów o bardzo dużym zagęszczeniu pikseli (ponad 500 PPI - patrz wyżej), osiągając wysokie rozdzielczości nawet przy niewielkiej przekątnej. Ponadto część elektroniki sterującej można osadzić bezpośrednio w matrycę, zmniejszając całkowitą grubość wyświetlacza. Główną wadą LTPS jest stosunkowo wysoki koszt, lecz w dzisiejszych czasach takie ekrany można spotkać nawet w niedrogich smartfonach.
  • S-PureLED. Technologia stworzona przez firmę Sharp i używana głównie w jej smartfonach. Właściwie technologia samych matryc w tym przypadku nazywa się S-CG Silicon TFT, natomiast S-PureLED to nazwa specjalnej warstwy, używanej w celu zwiększenia przezroczystości. S-CG Silicon TFT jest pozycjonowane przez twórców jako modyfikacja opisanej powyżej technologii LTPS, która pozwala na dalsze zwiększenie rozdzielczości wyświetlacza i jednocześnie zgromadzenie w nim większej ilości elektroniki sterującej (aż do „procesora na szkle” ) bez zwiększania grubości. Oczywiście takie ekrany nie są tanie.
  • E-Ink. Matryce oparte na tzw. „elektronicznym tuszu” - technologii upowszechnionej przede wszystkim w e-bookach. Główną cechą takiego ekranu jest to, że przy jego działaniu energia jest zużywana tylko na zmianę obrazu; nieruchomy obraz nie wymaga zasilania i może pozostać na wyświetlaczu nawet wtedy, gdy zasilania brak. Dodatkowo matryce E-Ink domyślnie nie świecą się same, a odbijają światło zewnętrzne - tak że podświetlenie własne nie jest obowiązkowe (choć można je stosować do pracy w półmroku i ciemności). Wszystko to zapewnia znaczne oszczędności energii; a dla niektórych użytkowników takie ekrany są czysto subiektywnie wygodniejsze i mniej męczące niż tradycyjne matryce. Z drugiej strony technologia E-Ink ma również poważne wady - przede wszystkim długi czas reakcji, a także złożoność i wysoki koszt kolorowych wyświetlaczy w połączeniu z niską jakością kolorów na nich. W świetle tego, takie matryce stały się bardzo rzadkim i egzotycznym wariantem, prawie nie spotykanym w dzisiejszych smartfonach.
— Częstotliwość odświeżania. Maksymalna częstotliwość odświeżania wyświetlacza, innymi słowy, najwyższa częstotliwość odświeżania, którą może on efektywnie odtworzyć. Im wyższy wskaźnik ten - tym wygładzony i płynny jest obraz, tym mniej zauważalny jest „efekt pokazu slajdów” i rozmycie obiektów przy poruszaniu się na ekranie. Jednocześnie należy pamiętać, że częstotliwość odświeżania 60 Hz, obsługiwana przez prawie każdy współczesny smartfon, jest w zupełności wystarczająca do większości zadań; nawet filmiki w wysokiej rozdzielczości obecnie prawie nie używają dużej liczby klatek na sekundę. Dlatego częstotliwość odświeżania w naszym katalogu jest specjalnie określana głównie dla ekranów zdolnych zapewnić więcej niż 60 Hz (w niektórych modelach - do 240 Hz). Tak wysoka częstotliwość może być przydatna w grach i niektórych innych zadaniach, poprawia też ogólne wrażenia z systemu operacyjnego i interfejsu aplikacji - ruchome elementy w takich interfejsach poruszają się płynnie i bez rozmycia.

— HDR. Technologia, która rozszerza dynamiczny zakres ekranu. W danym przypadku chodzi o zakres jasności - innymi słowy obecność HDR pozwala na wyświetlenie na ekranie jaśniejszej bieli i ciemniejszej czerni niż na wyświetlaczach bez tej technologii. W praktyce daje to zauważalną poprawę jakości obrazu: poprawia się nasycenie i niezawodność odwzorowania kolorów, a detale w bardzo jasnych lub bardzo ciemnych częściach kadru nie „toną” w bieli lub czerni. Jednak wszystkie te korzyści stają się zauważalne tylko wtedy, gdy odtwarzana treść była oryginalnie nagrana w HDR. Obecnie stosuje się kilka odmian tej technologii, oto ich cechy:
  • HDR10. Historycznie pierwszy z konsumenckich formatów HDR, jest dziś niezwykle popularny: w szczególności jest obsługiwany przez prawie wszystkie serwisy przesyłania strumieniowego z treścią HDR i jest używany jako standard dla takich treści na dyskach Blu-ray. Zapewnia 10-bitową głębię kolorów (ponad miliard odcieni). Jednocześnie urządzenia z tą technologią mogą również odtwarzać treści HDR10 + (patrz poniżej) - chyba że ich jakość będzie ograniczona możliwościami oryginalnego HDR10.
  • HDR10+. Ulepszona wersja HDR10. Przy tej samej głębi koloru (10 bitów) wykorzystuje tzw. dynamiczne metadane, które pozwalają na przekazywanie informacji o głębi koloru nie tylko dla grup po kilka klatek, lecz także dla pojedynczych klatek. Zapewnia to dodatkową poprawę reprodukcji kolorów.
  • Dolby Vision. Zaawansowany standard używany szczególnie w kinematografii profesjonalnej. Pozwala na osiągnięcie 12-bitowej głębi kolorów (prawie 69 miliardów odcieni), wykorzystuje wspomniane wyżej dynamiczne metadane, a także umożliwia przesyłanie dwóch wersji obrazu jednocześnie w jednym strumieniu wideo - HDR i normalnym (SDR). Jednocześnie Dolby Vision bazuje na tej samej technologii co HDR10, więc we współczesnym sprzęcie format ten często łączy się z HDR10 czy HDR10+.


Obsługa DC Dimming. Dosłownie z angielskiego, Direct Current Dimming jest tłumaczone jako ściemnianie prądem stałym. Technologia ta ma na celu zminimalizowanie migotania w ekranach OLED i AMOLED, co z kolei odciąża aparat wzrokowy użytkownika i chroni wzrok. Efekt „bez migotania” uzyskuje się poprzez bezpośrednie sterowanie jasnością podświetlanych diod LED poprzez zmianę wielkości podawanego do nich napięcia. Dzięki temu zapewnione jest zmniejszenie intensywności świecenia ekranu. — Zakrzywiony ekran. Ekran z zagiętymi krawędziami, na które wchodzi wyświetlany obraz. Innymi słowy, w danym przypadku zakrzywione jest nie tylko szkło, lecz także część aktywnej matrycy. Wyświetlacze, w których obie krawędzie są zakrzywione, nazywane są „szkłem 2.5D”; istnieją też urządzenia, w których ekran jest zagięty tylko z jednej strony. W każdym razie ta cecha szczególna nadaje smartfonowi ciekawy wygląd i poprawia widoczność obrazu przy patrzeniu z określonych kątów, jednak znacząco wpływa to na koszt i może powodować niedogodności przy trzymaniu (zwłaszcza bez etui). Dlatego przed zakupem modelu z takim wyposażeniem najlepiej potrzymać urządzenie w dłoni i upewnić się, że jest ono wystarczająco wygodne.

— Gorilla Glass. Specjalne wytrzymałe szkło, stosowane jako pokrycie ochronne wyświetlacza. Charakteryzuje się wysoką wytrzymałością i odpornością na zarysowania, pod względem tych wskaźników wielokrotnie przewyższa zwykłe szkło. Jest szeroko stosowane w smartfonach, w których duże rozmiary ekranu stawiają zwiększone wymagania niezawodności pokrycia. Różne wersje tego szkła można spotkać we współczesnych telefonach, oto cechy różnych wariantów:
  • Gorilla Glass v3. Najstarsza z aktualnych wersji - wydana w roku 2013; obecnie występuje głównie w stosunkowo niedrogich lub przestarzałych urządzeniach. Niemniej jednak pokrycie to ma niewątpliwe zalety: jest to pierwsza generacja Gorilla Glass, w której twórcy położyli zauważalny nacisk na odporność na zarysowania od kluczy, monet i innych przedmiotów, z którymi telefon może „zderzyć się” w kieszeni lub torbie. Pod tym względem wersja 3 pozostawała bezkonkurencyjna aż do wydania Gorilla Glass Victus w 2020 roku.
  • Gorilla Glass v4. Wersja wydana w 2014 roku. Kluczową cechą przy opracowywaniu tego pokrycia stał się nacisk na odporność na uderzenia (podczas gdy poprzednie generacje skupiały się głównie na odporności na zarysowania). W efekcie szkło jest dwukrotnie mocniejsze niż w wersji 3, a jego grubość wynosi zaledwie 0,4 mm. Natomiast odporność na zarysowania, w porównaniu do swojego poprzednika, nieznacznie spadła.
  • Gorilla Glass v5. Udoskonalenie "goryla", wprowadzone w 2016 roku w celu dalszego zwiększenia odporności na uderzenia. Według twórców, szkło wersji v5 okazało się 1,8 razy mocniejsze od poprzednika, pozostało nienaruszone w 80% upadków z wysokości 1,6 m „twarzą w dół” na chropowatą powierzchnię (i gwarantowana odporność na uderzenia 1,2 m). Odporność na zarysowania również nieco się poprawiła, lecz ten materiał w dalszym ciągu nie spełnia wymagań v3.
  • Gorilla Glass v6. Wersja wprowadzona w 2018 roku. W przypadku tego pokrycia deklaruje się 2-krotny wzrost wytrzymałości w porównaniu z poprzednikami, a także odporność na wielokrotne upadki na twardą powierzchnię (w testach szkło v6 z powodzeniem wytrzymało 15 upadków z wysokości 1 m). Maksymalna wysokość upadku (pojedynczego) z gwarantowanym zachowaniem stanu jest deklarowana na poziomie 1,6 m. Nie mniej jednak odporność na zarysowania nie została ulepszona.
  • Gorilla Glass 7. Oryginalna nazwa Gorilla Glass Victus - patrz poniżej.
  • Gorilla Glass Victus. Następca Gorilla Glass 6, wydany latem 2020 roku. W tym wydaniu twórcy zwrócili uwagę nie tylko na zwiększenie ogólnej wytrzymałości, lecz także na poprawę odporności na zarysowania. Pod względem tego ostatniego wskaźnika Victus przewyższa nawet wersję v3, nie wspominając o bardziej wrażliwych materiałach (a w porównaniu z v6 zadeklarowano dwukrotne zwiększenie odporności na zarysowania). Jeśli chodzi o wytrzymałość, pozwala wytrzymać pojedyncze upadki z wysokości do 2 m, a także do 20 kolejnych upadków z wysokości 1 m.

Slot na karty pamięci

Typ slota dla wymiennych kart pamięci w urządzeniu.

Sama w sobie obecność takiego slotu pozwala na rozszerzenie wbudowanej pamięci urządzenia, czasem kilkakrotnie. Ta opcja jest szczególnie przydatna, biorąc pod uwagę, że pojemna wbudowana pamięć masowa jest dość droga - zauważalnie droższa niż nośniki wymienne. Jednocześnie zauważamy, że konstrukcja może przewidywać pewne ograniczenia w pracy z kartami pamięci - na przykład niemożność zainstalowania aplikacji na tej karcie. Te ograniczenia są zwykle bezpośrednio związane z używanym systemem operacyjnym. Szybkość działania pamięci wymiennej jest zauważalnie niższa niż szybkość działania pamięci wbudowanej. Dlatego istnieją telefony bez slotu na kartę pamięci, aby urządzenie nie miało możliwości instalowania żadnych zewnętrznych dodatków.

Osobno zauważamy, że w niektórych urządzeniach na 2 karty SIM slot na kartę pamięci można połączyć ze slotem na drugą kartę SIM. Aby uzyskać więcej informacji, zobacz „Miejsce na karty”; zauważamy, że jeśli chcesz korzystać z 2 kart SIM i pamięci wymiennej w tym samym czasie, warto wybrać urządzenie z osobnym slotem na kartę pamięci.

Jeśli chodzi o rodzaje kart, to obecnie najpopularniejszym rodzajem jest microSD: jest dość kompaktowy, niedrogi i dostępny w różnych rozmiarach. Niektóre smartfony Huawei wykorzystują inny standar...d - Nano Memory (potocznie Nano SD). Wśród zalet takich kart można wymienić miniaturowy rozmiar (odpowiada nanoSIM), dużą pojemność (początkowo prezentowano warianty 64 GB, 128 GB i 256 GB), a także dużą prędkość (od 90 MB/s). Z drugiej strony najczęściej umieszcza je się nie w osobnym slocie, a zamiast drugiej karty nanoSIM.

Maks. pojemność karty

Największa pojemność karty pamięci, z którą telefon może poprawnie współpracować. Aby uzyskać więcej informacji na temat samych kart, zobacz „Gniazdo kart pamięci”; należy podkreślić, że pojemne nośniki często korzystają z zaawansowanych technologii, które nie są obsługiwane przez wszystkie urządzenia, a czasami telefony po prostu nie mają wystarczającej mocy do przetwarzania dużych ilości danych. Dlatego dla wygody wyboru maksymalna obsługiwana pojemność jest podawana w naszym katalogu.

W praktyce zdarzają się sytuacje, w których niektóre urządzenia mogą przekraczać podaną specyfikację. Warto jednak skupić się na oficjalnych danych, ponieważ jeśli zostaną one przekroczone, normalna praca karty nie jest gwarantowana.

Rodzaj karty SIM

Rodzaj karty SIM, używanej w telefonie komórkowym. Termin SIM w tym przypadku oznacza wszystkie rodzaje kart do identyfikacji w sieciach komórkowych, m.in. do sieci 3G, CDMA itp. (chociaż formalnie takie karty mogą mieć różne nazwy). A rodzaj takiej karty określa przede wszystkim jej rozmiar. Najpopularniejsze warianty to:

- micro-SIM. Największy rodzaj kart SIM, szeroko stosowany we współczesnych urządzeniach: zakłada rozmiar 15x12 mm. Został wprowadzony w 2010 roku, dziś jest stopniowo wypierany przez bardziej kompaktowe i zaawansowane nano-SIM i eSIM. Zwróć uwagę, że w skrajnych przypadkach kartę pod slot microSIM można wykonać po prostu obcinając większą mini-SIM do wymaganych wymiarów. Jednak taka operacja wiąże się z pewnym ryzykiem i wymaga dokładności, dlatego lepiej skontaktować się z operatorem komórkowym w celu wymiany karty SIM na odpowiednią.

- nano SIM. Najmniejszy format klasycznych (wymiennych) kart SIM to 12x9 mm. W takich kartach ramki są przycięte do samego chipa, tak że dalsze zmniejszenie tradycyjnych kart SIM jest niemożliwe. Ten standard pojawił się w 2012 roku, lecz nadal jest niezwykle popularny. Podobnie jak microSIM, kartę pod slot danego formatu można wykonać poprzez przycięcie większej karty SIM, lecz jest to zalecane tylko w skrajnych przypadkach.

- e-SIM. Karta SIM tego typu jest modułem elektronicznym, wbudowanym bezpośrednio w urządzenie i ni...e zakładającym wymiany. Dla autoryzacji w sieci operatora komórkowego należy wprowadzić odpowiednie ustawienia w eSIM; jednocześnie takie moduły są w stanie zapisywać kilka zestawów ustawień na raz, co pozwala na łatwe przełączanie się między różnymi operatorami - nie ma potrzeby grzebać przy fizycznej wymianie karty SIM, wystarczy zmienić profil w ustawieniach. Kolejną zaletą takich modułów jest ich kompaktowość. Jednakże przed zakupem telefonu z eSIM nie zaszkodzi ustalić, czy ta technologia jest obsługiwana przez Twojego operatora komórkowego - nawet w dzisiejszych czasach nie każda sieć jest kompatybilna z takimi modułami.

- nano + eSIM. Wariant, spotykany w smartfonach z dwiema kartami SIM. Uzupełnieniem wbudowanego modułu eSIM w takim urządzeniu jest slot, w którym można zainstalować wymienną kartę nanoSIM. Cechy każdego z tych typów kart szczegółowo opisano powyżej; tutaj zauważamy, że wygodnie jest zachować podstawowy numer (numery) telefonu w eSIM i używać zastępczych kart dla numerów tymczasowych. Taki format korzystania może być wygodny zwłaszcza przy częstych wyjazdach za granicę - karty lokalnych operatorów można zainstalować w tradycyjnym slocie nanoSIM.

Komunikacja

Rodzaje komunikacji obsługiwane przez urządzenie pomimo sieci komórkowych.

Ta lista obejmuje dwa rodzaje specyfikacji. Pierwszy rodzaj to bezpośrednio technologie łączności: Wi-Fi (w tym zaawansowane standardy Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax), Wi-Fi 6E (802.11ax), Wi-Fi 7 (802.11be)), Bluetooth (między innymi nowa generacja Bluetooth v 5 w postaci wersji 5.0, 5.1, 5.2, 5.3 i 5.4), NFC, łączność satelitarna. Druga odmiana to dodatkowe funkcje, zaimplementowane przez taki czy inny standard łączności: jest to przede wszystkim obsługa aptX (w tym aptX HD i aptX Adaptive), technologia multimedialna DLNA, a nawet wbudowana krótkofalówka. Oto bardziej szczegółowy opis każdej z tych specyfikacji:

— Wi-Fi 4 (802.11n). Wi-Fi to technologia łączności bezprzewodowej, która we współczesnych telefonach może być stosowana zarówno do dostępu do Internetu przez bezprzewodowe punkty dostępowe, jak i do bezpośredniej komunikacji z inn...ymi urządzeniami (w szczególności z aparatami i dronami). Połączenie Wi-Fi jest obowiązkowe dla smartfonów, natomiast jest ono niezwykle rzadkie w telefonach tradycyjnych. W szczególności Wi-Fi 4 (802.11n) zapewnia prędkość przesyłania danych do 600 MB/s i wykorzystuje dwa zakresy częstotliwości jednocześnie - 2,4 GHz i 5 GHz, dzięki czemu jest kompatybilne zarówno z wcześniejszymi standardami 802.11 b/g, jak i bardziej nowoczesnym Wi-Fi 5 (patrz poniżej). Obecnie Wi-Fi 4 uważa się za stosunkowo skromny standard, mimo to, że w dalszym ciągu wystarcza go do większości zadań.

— Wi-Fi 5 (802.11ac). Standard Wi-Fi (patrz powyżej), który jest następcą Wi-Fi 4. Teoretycznie obsługuje prędkości do 6,77 Gb/s, a także wykorzystuje zakres 5 GHz - jest mniej obciążony obcymi sygnałami i jest bardziej odporny na zakłócenia aniżeli tradycyjny zakres 2,4 GHz. Ze względów kompatybilności smartfon z modułem Wi-Fi 5 może obsługiwać wcześniejsze standardy, lecz nie zaszkodzi to wyjaśnić osobno.

— WiGig (802.11ad). Następny, po Wi-Fi 5, rozwinięcie standardów Wi-Fi, wyróżniający się przede wszystkim wykorzystaniem zakresu 60 GHz. Pod względem prędkości maksymalnej właściwie nie różni się od Wi-Fi 5, jednak wyższa częstotliwość zwiększa przepustowość kanału, przez co gdy kilka gadżetów komunikuje się z jednym wspólnym urządzeniem (np. routerem), prędkość łączności nie spada tak mocno, jak we wcześniejszych standardach. Z drugiej strony sygnał 802.11ad prawie nie jest w stanie przechodzić przez ściany; producenci stosują różne sztuczki aby zrekompensować tę wadę, lecz najlepszą jakość łączności nadal uzyskuje się tylko na linii wzroku. Jak na razie sprzętu do standardu WiGig nie jest za dużo, co więcej nie jest on kompatybilny z wcześniejszymi wersjami Wi-Fi; dlatego w smartfonach zazwyczaj przewiduje się wsparcie dla innych standardów.

— Wi-Fi 6 (802.11ax). Standard, opracowany jako bezpośrednie rozwinięcie i udoskonalenie Wi-Fi 5. Wykorzystuje zakresy od 1 do 7 GHz - to znaczy jest zdolny do pracy na standardowych częstotliwościach 2,4 GHz i 5 GHz (w tym ze sprzętem wcześniejszych standardów) oraz w innych pasmach częstotliwości. Maksymalna prędkość przesyłu danych wzrosła do 10 Gb/s, natomiast główną zaletą Wi-Fi 6 jest dalsza optymalizacja jednoczesnej pracy kilku urządzeń na tym samym kanale (poprawa rozwiązań technicznych, zastosowanych w Wi-Fi 5 i WiGig). To sprawia, że ​​Wi-Fi 6 zapewnia najmniejszy spadek przepustowości na tle innych współczesnych standardów.

— Wi-Fi 6E (802.11ax). Standard Wi-Fi 6E jest technicznie nazywany 802.11ax. Natomiast w przeciwieństwie do standardowego Wi-Fi 6 (więcej szczegółów podano w odpowiednim punkcie), które nosi podobną nazwę oraz zapewnia działanie w nieobciążonym paśmie 6 GHz. Ogólnie standard wykorzystuje 14 różnych pasm częstotliwości, oferując wysoką przepustowość w najbardziej zatłoczonych miejscach z wieloma aktywnymi połączeniami. I jest wstecznie kompatybilny z poprzednimi wersjami.

— Wi-Fi 7 (802.11be). Technologia, podobnie jak poprzednia Wi-Fi 6E, potrafi pracować w trzech pasmach: 2.4 GHz, 5 GHz i 6 GHz. Dodatkowo w Wi-Fi 7 zwiększono maksymalną szerokość kanału ze 160 MHz do 320 MHz – im szerszy kanał, tym więcej danych może przesłać. Standard IEEE 802.11be wykorzystuje modulację 4096-QAM, co pozwala pomieścić większą liczbę symboli w jednostce transmisji danych. Wi-Fi 7 zapewnia maksymalną teoretyczną prędkość do 46 Gb/s. Jeżeli chodzi o wykorzystanie połączenia bezprzewodowego do streamingu i gier wideo, bardzo ciekawie prezentuje się wdrożona funkcja MLO (Multi-Link Operation). Za jej pomocą można agregować kilka kanałów w różnych zakresach, co znacznie zmniejsza opóźnienia w transmisji danych, zapewnia niski i stabilny ping. Do zminimalizowania opóźnienia w komunikacji, pod warunkiem, że podłączonych jest wiele urządzeń klienckich, zaimplementowano technologię Multi-RU (Multiple Resource Unit).

— Bluetooth. Technologia bezpośredniej łączności bezprzewodowej między różnymi urządzeniami. W telefonach komórkowych służy głównie do podłączania słuchawek, zestawów słuchawkowych i gadżetów naręcznych, takich jak bransoletki fitness, lecz dopuszczalne są również inne scenariusze zastosowania - tryb zdalnego sterowania, bezpośredni transfer plików itp. We współczesnych telefonach mogą występować różne wersje Bluetooth. Oto ich cechy:
  • Bluetooth v 4.0. Zasadnicze odświeżenie (po wersji 3.0), które wprowadziło jeszcze jeden format przesyłania danych - Bluetooth z niskim zużyciem energii (LE). Protokół ten jest przeznaczony przede wszystkim do miniaturowych urządzeń, które przesyłają niewielkie ilości informacji, takich jak bransoletki fitness i czujniki medyczne. Bluetooth LE umożliwia znaczne oszczędzanie energii przy takim rodzaju łączności.
  • Bluetooth v 4.1. Rozwinięcie i usprawnienie Bluetooth 4.0. Jednym z kluczowych usprawnień okazała się być optymalizacja współpracy z modułami łączności 4G LTE tak, aby Bluetooth i LTE nie kolidowały ze sobą. Dodatkowo w tej wersji stało się możliwe jednoczesne wykorzystanie urządzenia Bluetooth w kilku rolach - np. do zdalnego sterowania urządzeniem zewnętrznym przy jednoczesnym transmitowaniu muzyki do słuchawek.
  • Bluetooth v 4.2. Dalsze, po 4.1, rozwinięcie standardu Bluetooth. Zasadniczych nowości nie zostało przedstawiono, natomiast standard otrzymał szereg ulepszeń dotyczących niezawodności i odporności na zakłócenia, a także ulepszoną kompatybilność z "Internetem rzeczy"
  • Bluetooth v 5.0. Wersja zaprezentowana w roku 2016. Kluczowe nowości to dalsza rozbudowa możliwości związanych z „Internetem rzeczy”. W szczególności w protokole Bluetooth Low Energy (patrz powyżej) możliwe stało się podwojenie prędkości przesyłania danych (do 2 MB/s) kosztem zmniejszenia zasięgu, a także czterokrotne zwiększenie zasięgu kosztem zmniejszenie prędkości; ponadto wprowadzono szereg usprawnień dotyczących jednoczesnej pracy dużej liczby podłączonych urządzeń.
  • Bluetooth v 5.1. Odświeżenie opisanej powyżej wersji v 5.0. Oprócz ogólnych ulepszeń w jakości i niezawodności łączności, w tej wersji wprowadzono tak interesującą funkcję jak określenie kierunku, z którego dociera sygnał Bluetooth. Dzięki temu możliwe staje się określenie lokalizacji podłączonych urządzeń z dokładnością do centymetra, co może być przydatne np. przy wyszukiwaniu słuchawek bezprzewodowych.
  • Bluetooth v 5.2. Następne, po 5.1, odświeżenie Bluetooth 5. generacji. Główne nowości w tej wersji to szereg ulepszeń w zakresie bezpieczeństwa, dodatkowa optymalizacja mocy w trybie LE oraz nowy format sygnału audio dla synchronizacji odtwarzania równoległego na kilku urządzeniach.
  • Bluetooth v 5.3. Protokół łączności bezprzewodowej Bluetooth v 5.3, wprowadzony do użytku na początku 2022 roku. Przyspieszono w nim proces negocjacji kanału łączności między sterownikiem a urządzeniem, zaimplementowano funkcję szybkiego przełączania się między stanem pracy w małym cyklu roboczym a trybem wysokiej prędkości, poprawiono przepustowość i stabilność połączenia poprzez zmniejszenie podatności na zakłócenia. W przypadku nieoczekiwanych zakłóceń w trybie pracy Low Energy przyśpieszono procedurę wyboru kanału łączności do przełączenia. W protokole 5.3 nie ma fundamentalnych nowości, lecz widać w nim szereg usprawnień jakościowych.
  • Bluetooth v 5.4. W wersji 5.4 protokołu, która została wprowadzona na początku 2023 roku, zwiększono zasięg i prędkość wymiany danych, co doskonale sprawdza się w zastosowaniach wymagających komunikacji na duże odległości (np. systemy inteligentnego domu). Również w wersji Bluetooth v 5.4 poprawiono energooszczędny tryb BLE. Ta wersja protokołu wykorzystuje nowe funkcje bezpieczeństwa w celu ochrony danych przed nieautoryzowanym dostępem, posiada podwyższoną niezawodność połączenia dzięki funkcji wyboru najlepszego kanału do komunikacji oraz zapobiega utracie połączenia w przypadku zakłóceń.


— Obsługa aptX. Technologia aptX została opracowana w celu poprawy jakości dźwięku przesyłanego przez Bluetooth. Przy transmisji dźwięku w zwykłym formacie, bez aptX, sygnał jest dość mocno kompresowany, co wpływa na jakość dźwięku; nie jest to krytyczne przy rozmowie przez telefon, lecz może znacząco zepsuć wrażenie słuchania muzyki. Z kolei aptX pozwala na przesyłanie sygnału audio niemal bez kompresji i uzyskanie jakości dźwięku porównywalnej z połączeniem przewodowym. Takie cechy docenią szczególnie melomani, preferujący słuchawki Bluetooth lub głośniki bezprzewodowe. Oczywiście, aby korzystać z technologii aptX, zarówno smartfon jak i zewnętrzne urządzenie audio muszą ją wspierać.

— Obsługa aptX HD. Technologia aptX HD to dalsze rozwinięcie i udoskonalenie oryginalnej technologii aptX, umożliwiającej przesyłanie dźwięku w jeszcze wyższej jakości - Hi-Res (24 bity/48 kHz). Według twórców, standard ten pozwala osiągnąć jakość sygnału przewyższającego AudioCD oraz czystość dźwięku porównywalną do łączności przewodowej. To ostatnie jest często kwestionowane, lecz można argumentować, że ogólnie aptX HD zapewnia bardzo wysoką jakość dźwięku. Z drugiej strony wszystkie zalety tej technologii stają się widoczne dopiero przy dźwięku Hi-Res - o jakości 24-bit/48 kHz lub wyżej; w przeciwnym razie jakość jest ograniczona nie tyle cechami połączenia, ile właściwościami plików źródłowych.

— Obsługa aptX LL. Modyfikacja technologii aptX, zaprojektowana w celu maksymalizacji opóźnień transmisji sygnału. Kodowanie i dekodowanie sygnału przy przesyłaniu dźwięku przez Blueooth z aptX zajmuje jakiś czas; nie ma to krytycznego znaczenia przy słuchaniu muzyki, jednak w filmach lub grach może wystąpić zauważalny brak synchronizacji między obrazem a dźwiękiem. Technologia AptX LL nie posiada tej wady; również powoduje opóźnienie, lecz to opóźnienie okazuje się być tak małe, że osoba go nie zauważa.

— Obsługa aptX Adaptive. Dalsze rozwinięcie aptX; faktycznie łączy możliwości aptX HD i aptX Low Latency, lecz nie ogranicza się tylko do tego. Jedną z głównych cech tego standardu jest tak zwany adaptacyjny bitrate: kodek automatycznie dostosowuje rzeczywistą prędkość przesyłania danych w oparciu o cechy transmitowanych treści (muzyki, dźwięku z gier, łączności głosowej itp.) oraz obciążenie używanych częstotliwości. Pomaga to w szczególności zmniejszyć zużycie energii i poprawić niezawodność łączności; a specjalne algorytmy pozwalają na transmisję dźwięku w jakości porównywalnej z aptX HD (24 bity/48 kHz), przy kilkukrotnie mniejszej ilości przesyłanych danych. A minimalne opóźnienie transferu danych (na poziomie aptX LL) sprawia, że ​​ten kodek jest idealny również do gier i filmów.

— Chip NFC. NFC to technologia łączności bezprzewodowej na bardzo małe odległości, do 10 cm. Jednym z najpopularniejszych wariantów zastosowania tej technologii w smartfonach są płatności zbliżeniowe, gdy urządzenie faktycznie pełni rolę karty płatniczej: wystarczy zbliżyć urządzenie do terminalu z obsługą technologii zbliżeniowych, takich jak PayPass czy PayWave. Innym popularnym sposobem korzystania z NFC jest automatyczne łączenie się z innym urządzeniem obsługującym NFC przez Wi-Fi lub Bluetooth: gadżety zbliżone do siebie automatycznie nawiązują połączenie, a użytkownik musi je tylko potwierdzić. Technicznie możliwe są również inne warianty: rozpoznawanie kart inteligentnych i tagów RFID, wykorzystanie urządzenia jako biletu komunikacji miejskiej, karty dostępu itp. Jednak takie formaty użytkowania są znacznie mniej powszechne.

— Obsługa DLNA. DLNA (Digital Living Network Alliance) to technologia, która umożliwia łączenie różnych urządzeń domowych (od komputerów po sprzęt AGD) w jedną sieć w celu udostępniania treści i sterowania. Gdy urządzenie obsługujące tę technologię jest podłączone do sieci publicznej, użytkownik może np. transmitować z niego wideo na ekran telewizora, sterować funkcjami odtwarzacza audio lub wideo (innymi słowy używać go jako pilota) a nawet otrzymywać powiadomienia z urządzeń AGD na telefon (np. mikrofalówkę). W telefonach komórkowych podłączenie DLNA jest zwykle realizowane przy użyciu technologii Wi-Fi.

— Port podczerwieni. Port podczerwieni wygląda jak małe "oczko", znajdujące się zwykle w górnej części telefonu. Wyposażenie to pozwala zamienić telefon w pilot do sterowania różnymi urządzeniami - wystarczy zainstalować odpowiednią aplikację. Warto zaznaczyć, że wśród takich aplikacji można znaleźć wariant dla niemal każdego urządzenia - od telewizorów przez klimatyzatory po okapy itp. W związku z tym, „pilot smartfon” okazuje się być bardzo uniwersalny.

— Krótkofalówka. Wbudowany moduł łączności radiowej, pozwalający na wykorzystanie telefonu jako krótkofalówki - do komunikowania się na stosunkowo krótkie odległości bez użycia karty SIM. Oczywiście do takiej komunikacji potrzeba jeszcze jednej krótkofalówki (lub telefonu z tą funkcją). Konkretne częstotliwości obsługiwane przez wbudowany moduł radiowy należy wyjaśnić osobno; jednak wszystkie telefony z tą funkcją pracują w jednym lub kilku standardowych zakresach. W praktyce oznacza to, że są w stanie komunikować się nie tylko z podobnymi telefonami, lecz także z klasycznymi cywilnymi krótkofalówkami – z zastrzeżeniem zbieżności obsługiwanych zakresów. Zasięg komunikacji jest zwykle dość krótki; niemniej jednak wbudowane krótkofalówki mogą być bardzo przydatne w sytuacjach, w których konwencjonalna łączność komórkowa jest nieskuteczna lub niedostępna. Typowymi przykładami takich sytuacji są przebywanie „z dala od cywilizacji”, w rejonie o słabym zasięgu lub podróżowanie za granicę, gdzie roaming jest drogi.

— Łączność satelitarna. Funkcja łączności satelitarnej ma na celu wysyłanie zgłoszeń alarmowych do służb ratowniczych w sytuacjach awaryjnych. Smartfony z możliwością łączenia się z częstotliwościami satelitarnymi mogą komunikować się ze służbami ratunkowymi w obszarach, gdzie nie ma zasięgu sieci komórkowej. Dla lepszego odbioru sygnału z satelitów pożądane jest, aby użytkownik znajdował się na otwartej przestrzeni. Aktualna wersja funkcji zakłada przekazywanie tylko gotowych komunikatów. W przyszłości planowana jest obsługa pełnowartościowej wymiany wiadomościami za pośrednictwem łączności satelitarnej, jednak będzie za to pobierana odrębna opłata.

Złącza

Złącza przewodowe, przewidziane w konstrukcji telefonu.

W tym rozdziale zwykle precyzuje się rodzaj uniwersalnego złącza (najczęściej microUSB, USB C lub Lightning), a także obecność mini-jack (3,5 mm)(są urządzenia bez takiego gniazda). Może tu również wskazywać się interfejs portu USB C aż do wysokoprędkościowej trzeciej wersji ( USB C v 3 ), umiejscowienie gniazda 3,5 mm (wyjście na słuchawki) oraz obecność dodatkowych portów o bardziej specyficznym przeznaczeniu.

Uniwersalne złącza służą przede wszystkim do ładowania baterii, do podłączania różnych akcesoriów do telefonu oraz do podłączenia samego urządzenia do komputera za pomocą kabla; z kolei port 3,5 mm przeznaczony jest przede wszystkim na słuchawki i inne akcesoria audio, choć możliwe są inne warianty korzystania. Oto bardziej szczegółowy opis różnych rodzajów złączy:

- USB C. Swego rodzaju następca microUSB, który jest coraz częściej stosowany w urządzeniach mobilnych. USB C różni się od swojego poprzednika przede wszystkim nieznacznie zwiększonymi wymiarami oraz wygodną dwustronną konstrukcją: dzięki niej nie ma znaczenia, po której stronie wkłada się wtyczkę. Ponadto interfejs ten pozwala na implementację bardziej zaawansowanych funkcji niż microUSB - w szczególności niektóre technologie szybkiego ładowania były pi...erwotnie stworzone specjalnie dla USB C. Zwracamy również uwagę, że standard USB obsługiwany przez tego typu złącze może precyzować się w specyfikacji. Dziś spotyka się następujące odmiany:
  • USB C 3.2 gen1. Standard wcześniej znany jako USB 3.0 i USB 3.1 gen1. Zapewnia prędkość przesyłania danych do 4,8 Gb/s.
  • USB C 3.2 gen2. Współczesna nazwa standardu, dawniej USB 3.1, a następnie USB 3.1 gen2. Prędkość podłączenia przez ten interfejs może sięgać 10 Gb/s.
  • USB C 3.2 gen2x2. Standard (wcześniej znany jako USB 3.2), który zapewnia dwukrotnie większą prędkość niż „zwykły” USB 3.2 gen2 - czyli do 20 Gb/s. W przeciwieństwie do poprzednich wersji, był stworzony specjalnie pod złączę USB C.
- Micro USB. Uniwersalne złącze, które kiedyś było niezwykle szeroko stosowane w urządzeniach przenośnych (z wyjątkiem być może technologii Apple). Jest mniej wygodne i bardziej zaawansowane technicznie niż USB C, przez co stopniowo traci na popularności; niemniej jednak w sprzedaży jest jeszcze sporo urządzeń z microUSB.

- Lightning. Autorskie złącze Apple, używane wyłącznie w iPhonie wśród smartfonów. Posiada dwustronną konstrukcję, która umożliwia podłączenie wtyczki z dowolnej strony. We współczesnych iPhone'ach służy zarówno jako urządzenie uniwersalne, jak i do podłączania słuchawek (w 2016 roku Apple zrezygnowało z wyjścia audio 3,5 mm w tych urządzeniach).

- Autorskie złącze. To czy inne uniwersalne złącze, niezwiązane z typami opisanymi powyżej. W dzisiejszych czasach takie wyposażenie jest niezwykle rzadkie - standardowe interfejsy są wygodniejsze i bardziej uniwersalne, ponieważ pozwalają na zastosowanie nie tylko „rodzimych” akcesoriów, lecz także rozwiązań innych producentów.

- Złącze magnetyczne. Złącze, w którym do utrzymania kabla wykorzystuje się magnes trwały zamiast standardowego systemu wtyczki i gniazda. Takie przyrządy stosowane są głównie w urządzeniach z ochroną przed wodą (patrz „Ochrona przed wilgocią”), a najczęściej - do ładowania baterii oraz jako uzupełnienie standardowych złączy uniwersalnych (najczęściej microUSB lub USB C). Główną zaletą złącza magnetycznego jest to, że nie potrzebuje zaślepki, by chronić się przed wodą. Dzięki temu, po pierwsze, upraszcza się podłączanie i odłączanie ładowarki, a po drugie zminimalizowane jest zużycie zaślepek na standardowych portach - nie trzeba je otwierać i zamykać za każdym razem żeby podłączyć do ładowarki. Co prawda do złącza magnetycznego pasuje tylko specjalny „rodzimy” kabel; jednakże w przypadku zgubienia lub zepsucia tego kabla może być przewidziana opcja ładowania w zwykły sposób za pomocą tradycyjnego uniwersalnego złącza.

- Mini-jack (3,5 mm). Złącze, używane głównie do podłączania słuchawek przewodowych i innych urządzeń audio (takich jak przenośne głośniki). Takie podłączenie jest niezwykle popularne wśród akcesoriów audio (i to nie tylko do przeznaczenia „mobilnego”); tak że wyszukanie słuchawek, zestawów słuchawkowych czy głośników pod ten rodzaj gniazda zwykle nie stanowi problemu. Ponadto gniazdo 3,5 mm może być używane do bardziej szczegółowych zadań - na przykład do podłączenia czytnika kart lub wymiany danych z czujnikami fitness i innymi specyficznymi sprzętami. Jednakże takie funkcje są rzadko używane i wymagają instalacji specjalnych aplikacji, lecz podłączenie słuchawek to podstawowa funkcja takiego złącza, dostępna domyślnie. Dlatego gniazdo mini-jack jest często nazywane „wyjściem na słuchawki”.

- Umiejscowienie wyjścia słuchawkowego. Opisane powyżej gniazdo 3,5 mm we współczesnych telefonach może znajdować się na górze, na dole lub z boku urządzenia. Ten drugi wariant jest generalnie mniej wygodny niż dwa pierwsze i dlatego jest rzadki. A wybór według tego wskaźnika zależy przede wszystkim od tego, jak dokładnie będziesz nosić telefon i z której strony będziesz podłączał do niego słuchawki; optymalne warianty będą się różniły w zależności od sytuacji.

Pojemność baterii

Pojemność baterii, w którą wyposażono telefon komórkowy.

Teoretycznie większa pojemność baterii pozwala na dłuższe ładowanie urządzenia. Należy jednak mieć na uwadze, że rzeczywisty czas pracy baterii będzie również zależał od poboru mocy przez gadżet - a determinuje go specyfikacja sprzętowa, system operacyjny, specjalne rozwiązania przewidziane w konstrukcji itp. Tak więc w praktyce telefony z pojemnymi bateriami są generalnie „długo działające”, lecz rzeczywista autonomia może się znacznie różnić nawet w dwóch modelach o podobnej specyfikacji. Dlatego dla dokładnej oceny lepiej skupić się nie na pojemności baterii, lecz na zadeklarowanym bezpośrednio przez producenta czasie pracy w różnych trybach (patrz poniżej).

Materiał ramki / pokrywy

Materiały, z których wykonana jest ramka (krawędź boczna) oraz tylna pokrywa urządzenia.

W naszym katalogu dane te podawane są dwoma słowami - materiał ramki oraz materiał pokrywy. Na przykład urządzenie ze szklaną pokrywą i metalowymi krawędziami będzie oznaczone jako „metal/szkło” (najpierw ramka, potem pokrywa). Dwa słowa podaje się nawet jeśli dla obu elementów jest używany ten sam materiał - na przykład metal/metal w przypadku całkowicie metalowej obudowy.

Główne materiały ramek aktualnie obejmują tworzywo sztuczne, metal, szkło, gumę oraz ceramikę. Tylne pokrywy są również wykonywane głównie z tworzywa sztucznego, metalu, ceramiki lub gumy, a wśród szklanych pokryw spotykana jest specjalna odmiana - fragmenty ze szkła Gorilla Glass. Czasami wykorzystywane są bardziej specyficzne materiały - na przykład skóra. Oto bardziej szczegółowy opis każdej z tych odmian:

— Tworzywo sztuczne. Dość prosty, niedrogi, a jednocześnie uniwersalny i praktyczny materiał. W rzeczywistości w naszych czasach na rynku istnieje wiele odmian tworzyw sztucznych, które różnią się ceną i cechami praktycznymi; więc ogólne właściwości tego materiału zależą przede wszystkim od półki cenowej urządzenia. Pokrywie z tworzywa sztucznego jest najłatwiej nadać nietypowy design..., chociaż takie wykończenie można spotkać również w innych materiałach. Ogólnie rzecz biorąc, wszystkie rodzaje tworzyw sztucznych we współczesnych telefonach można z grubsza podzielić na błyszczące, matowe, faliste i miękkie w dotyku (Soft-touch). Tymi najbardziej jasnymi są błyszczące, lecz bardzo wyczuwalny jest na nich brud (przede wszystkim odciski palców), ponadto takie obudowy ślizgają się w dłoniach. Matowe powierzchnie nie są takie jasne, lecz są mniej wrażliwe na zabrudzenia. Soft-touch to specjalny rodzaj matowego plastiku: ze względu na specyficzną fakturę powierzchni materiał ten jest miękki w dotyku, podobnie jak guma. Doskonale trzyma się też w dłoniach i prawie się nie ślizga. Najbardziej niezawodny pod tym względem jest plastik falisty - z charakterystycznymi nacięciami na powierzchni; jednak nie każdemu spodoba się wygląd i dotyk takich powierzchni.
Jeśli chodzi o kombinacje z innymi materiałami, ramki plastikowe mogą przewidywać się w metalowych i szklanych obudowach - dla bezpiecznego trzymania; a plastikowe pokrywy można uzupełnić metalowymi lub gumowymi ramkami dla zwiększenia niezawodności.

— Metal. W przypadku telefonów komórkowych pod wyrazem metal najczęściej rozumiany jest stop aluminium. Materiał ten łączy w sobie dużą wytrzymałość, niewielką wagę i dobre przewodność cieplną (to ostatnie jest szczególnie ważne przy odprowadzaniu ciepła z „wnętrza” mocnych smartfonów). Metalowe obudowy są stosunkowo rzadko wykonywane w jasnych kolorach, lecz takie wykończenie jest również możliwe; ponadto nawet bez dodatkowego ubarwienie materiał ten wygląda dobrze. Generalnie kosztuje więcej niż tworzywo sztuczne, lecz obecnie nawet modele telefonów budżetowych mogą być wykonane z metalu. Ponadto, metalową ramkę można łączyć z niemal każdym materiałem pokrywy, jednakże takie ramki są szczególnie popularne w modelach ze szklanym panelem tylnym - metal dodaje obudowie dodatkowej wytrzymałości. Z kolei metalowe pokrywy spotyka się głównie wśród obudów całkowicie metalowych, rzadziej - w połączeniu z plastikową ramką (pozwala to obniżyć koszt i poprawić przepuszczalność obudowy dla sygnałów łączności).

— Szkło. W obudowach telefonów zwykle wykorzystuje się specjalne hartowane szkło o podwyższonej wytrzymałości (specjalna odmiana takich szkieł - Gorilla Glass - wskazuje się osobno, patrz poniżej). Teoretycznie szkło jest bardziej wrażliwe na uderzenia niż większość innych materiałów, lecz w praktyce nadal trudno jest rozbić taką powierzchnię. Co więcej, takie obudowy wyglądają dość stylowo i nietypowo. Do ich jednoznacznych wad należy dość wysoki koszt, a także charakterystyczne cechy błyszczących powierzchni - skłonność do wyślizgiwania się z dłoni i „zbierania” brudu, zwłaszcza odcisków palców. Jeśli chodzi o poszczególne elementy obudowy, to szkło jest najczęściej wykorzystywane na tylne pokrywy; często są one uzupełniane ramkami wykonanymi z trwalszego materiału (najczęściej z metalu). Natomiast ramki szklane są zwykle częścią całoszklanych obudów - inne odmiany konstrukcji z wielu powodów nie mają sensu.

— Szkło Gorilla Glass. Specjalny rodzaj szkła o dużej wytrzymałości, z którego mogą wykonywać się pokrywy tylne. Aby uzyskać ogólne informacje na temat szkła, patrz powyżej; cechy Gorilla Glass zostały szczegółowo opisane w "Podstawowy wyświetlacz". Należy zauważyć, że podobnie jak w przypadku wyświetlaczy, w tylnym panelu obudowy mogą być stosowane odmienne wersje takiego szkła, różniące się odpornością na uderzenia i zarysowania.

— Guma. Z reguły w danym przypadku chodzi o obudowę lub ramki wykonane z twardego materiału (plastiku lub metalu) z dodatkowym pokryciem gumowym. Zastosowanie takiego pokrycia to niewątpliwa oznaka telefonu o wysokim stopniu ochrony - wodoodpornej, a często także uderzeniowoodpornej. Guma jest optymalnym materiałem na tego typu urządzenia: doskonale odporna zarówno na wilgoć jak i uderzenia, dobrze izoluje wnętrze od zimna i ciepła, a taka powierzchnia jest przyjemna w dotyku i nie ślizga się w dłoni. Główną wadą tego materiału jest jego masywność: gumowe pokrycie same w sobie jest dość grube, co z kolei wpływa na wymiary urządzenia. W związku z tym warto zwrócić uwagę na ten wariant w przypadkach, gdy bezpieczeństwo jest dla Ciebie ważniejsze niż kompaktowość. Zwróć uwagę, że gumową obudowę można połączyć z metalową ramką, a gumową ramkę można zamontować na urządzeniu z tworzywa sztucznego; te odmiany są również dość niezawodne.

— Ceramika. Ceramika odnosi się do materiałów wykonywanych przez spiekanie początkowych komponentów przy wysokich temperaturach. Telefony komórkowe wykorzystują specjalne, bardzo wytrzymałe materiały. Zalety ceramiki obejmują stylowy wygląd i dobrą niezawodność w większości sytuacji. Z drugiej strony, ten materiał jest nadal dość wrażliwy na uderzenia (zwłaszcza punktowe), ma tendencję do wyślizgiwania się z rąk i nie jest tani. Dlatego we współczesnych telefonach komórkowych ceramika jest rzadko stosowana - głównie jako materiał stylowy w dość zaawansowanych modelach. Większość tych modeli łączy ceramiczną pokrywę z metalową ramką; obudowy pełnoceramiczne są znacznie mniej powszechne.

— Skóra. Dość rzadki i specyficzny materiał, używany głównie jako rozwiązanie designerskie. W takich przypadkach pokrycie skórzane jest przewidziane do pokrywy tylnej, a ramka jest wykonana z metalu lub tworzywa sztucznego. Materiał ten nadaje urządzeniu solidny wygląd, podkreślając status właściciela; dodatkowo jest przyjemny w dotyku i nie pozwala na wyślizgnięcie urządzenia z dłoni. Jednak skóra jest droga i mało niezawodna: łatwo rysuje się i pęka nawet przy lekkim kontakcie z ostrymi przedmiotami, a także jest podatna na ścieranie. Dlatego takie obudowy nie są popularne nawet wśród telefonów z wyższej półki.

Tylna pokrywa

Typ powierzchni tylnej pokrywy urządzenia.

- Błyszczący. Pokrywa o gładkiej, błyszczącej powierzchni. Taka powierzchnia jest niedroga, a jednocześnie wygląda stylowo i efektownie - zwłaszcza jeśli jest wykonana w jasnym kolorze, na przykład czerwonym lub żółtym. Z drugiej strony odciski palców są bardzo widoczne na połysku, a taka pokrywa może ślizgać się w dłoniach, co zwiększa ryzyko wypadnięcia urządzenia z rąk. Dodatkowo taka pokrywa może mieć kolor gradientu.

- Matowy. Lekko chropowata powierzchnia, która nie błyszczy jak połysk i wygląda na przyciemnioną. Równocześnie odciski palców i inne zabrudzenia są mniej widoczne na takiej powierzchni oraz ślizga się ona mniej w dłoniach; a brak połysku to zaleta dla ceniących dyskretny i solidny design. Specyfika matowej pokrywy zależy od jej materiału: np. w wyrobach z plastiku często używa się tak zwanego „soft-touch” plastiku, jest on miękki i przyjemny w dotyku, a jednocześnie twardy sam w sobie.

- Błyszczący lub matowy. Ta odmiana oznacza, że urządzenie jest dostępne w kilku wariantach konstrukcyjnych: niektóre mają błyszczącą tylną obudowę, inne - matowe. W ten sposób użytkownik może wybrać wariant według własnego uznania. Aby zapoznać się z zaletami i wadami obu, patrz powyżej.

- falisty. Powierzchnia z wyraźnymi nierównościami; może to być w...zór o małej teksturze lub raczej duże wypustki (te ostatnie spotykane są w szczególności wśród „chronionych” smartfonów). W każdym razie falista powierzchnia zapewnia pewne trzymanie w dłoni i dobrze ukrywa brud, lecz takie obudowy są nieco droższe niż matowe, a nawet droższe niż błyszczące.
Dynamika cen
Nokia 105 2019 często porównują