Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Switche

Porównanie D-Link DGS-3130-30S vs MikroTik CRS317-1G-16S+RM

Dodaj do porównania
D-Link DGS-3130-30S
MikroTik CRS317-1G-16S+RM
D-Link DGS-3130-30SMikroTik CRS317-1G-16S+RM
Porównaj ceny 5Porównaj ceny 9
TOP sprzedawcy
Główne
Przełącznik posiada dodatkowy port zarządzania MGMT i USB.
Rodzajzarządzalny warstwy 3 (L3)zarządzalny warstwy 3 (L3)
MontażRACKRACK
Porty
Gigabit Ethernet1 szt.
10 Gigabit Ethernet2 szt.
SFP (światłowód)24 szt.16 szt.
SFP+ (światłowód)4 szt.
Uplink6 szt.
Typ UplinkSFP+/10Gigabit Ethernet
Port konsolowy
Funkcje i możliwości
Zarządzanie
SSH
Telnet
przeglądarka www
SNMP
SSH
Telnet
przeglądarka www
SNMP
Podstawowe funkcje
serwer DHCP
funkcja stackowania
 
VLAN
ochrona przed pętlami
ograniczenie prędkości dostępu
serwer DHCP
 
Link Aggregation
VLAN
ochrona przed pętlami
ograniczenie prędkości dostępu
Routing
Statyczny
Standardy
 
 
 
RIP
OSPF
BGP, VRRP, ECMP
Dane ogólne
Zasilaczwbudowanywbudowany
Temperatura robocza-20 °C ~ +60 °C
Wymiary (SxGxW)440x250x44 mm443x224x44 mm
Waga3210 g
Data dodania do E-Kataloglipiec 2019marzec 2018

Gigabit Ethernet

Liczba standardowych złączy RJ-45 formatu Gigabit Ethernet, przewidziana w konstrukcji urządzenia.

Jak sama nazwa wskazuje, złącza te zapewniają transfer danych z prędkością do 1 GB/s. Początkowo Gigabit Ethernet był uważany za standard profesjonalny, a nawet dziś realna potrzeba takich prędkości występuje głównie przy wykonywaniu zadań specjalnych. Niemniej jednak nawet stosunkowo niedrogie komputery są obecnie wyposażone w gigabitowe karty sieciowe, nie mówiąc już o bardziej zaawansowanym sprzęcie.

Jeśli chodzi o liczbę złączy, odpowiada ona liczbie urządzeń sieciowych, które można podłączyć bezpośrednio do „przełącznika”, bez użycia dodatkowego sprzętu. W przypadku Gigabit Ethernet liczba złączy do 10 włącznie jest uważana za stosunkowo niewielką, od 10 do 25 - średnią, a obecność ponad 25 portów tego typu jest typowa dla modeli poziomu profesjonalnego. Warto zaznaczyć, że w niektórych „przełącznikach” poszczególne złącza tego typu łączone są ze złączem optycznym SFP lub SFP+ (patrz poniżej). Złącza te są oznaczone jako „combo” i są uwzględniane zarówno przy podliczaniu RJ-45, jak i SFP/SFP+.

10 Gigabit Ethernet

Liczba standardowych złączy sieciowych 10Gigabit Ethernet LAN przewidzianych w konstrukcji przełącznika.

Ten format jest profesjonalny: zapewnia prędkości do 10 Gbit/s (co znajduje odzwierciedlenie w nazwie) i jest przeznaczony głównie do zadań związanych z przetwarzaniem dużych ilości ruchu. Niemniej jednak wsparcie dla Gigabit Ethernet znajduje się obecnie nawet w kontrolerach sieciowych komputerów PC i laptopów, nie mówiąc już o bardziej specjalistycznym sprzęcie. A liczba złączy odpowiada liczbie urządzeń, które można jednocześnie bezpośrednio podłączyć do przełącznika za pośrednictwem tego interfejsu. Należy pamiętać, że w niektórych „przełącznikach” osobne złącza tego typu są łączone z optycznym SFP lub SFP+ (patrz niżej). Złącza te są oznaczone jako „combo” i liczą się zarówno do sieci LAN, jak i SFP / SFP +.

SFP (światłowód)

Liczba portów optycznych w standardzie SFP przewidziana w konstrukcji przełącznika.

Transmisja danych za pomocą kabla światłowodowego jest wygodna, ponieważ taki kabel nie jest podatny na zakłócenia elektromagnetyczne; a prędkość połączenia przez SFP może osiągnąć 2,7 Gb/s. Jednocześnie czyste włókno jest rzadko używane, więc nawet zaawansowane przełączniki zapewniają niewielką liczbę portów SFP - znacznie mniej niż Ethernet jednego lub drugiego typu (patrz wyżej). Tak więc najbardziej rozpowszechnione są rozwiązania na 2 złącza lub 4 złącza tego typu, chociaż jest ich więcej - 6, 8, a nawet 10 i więcej. Należy pamiętać, że przełączniki mogą używać tak zwanych złączy combo, które łączą SFP i Ethernet; obecność takich portów jest określona w uwagach, są one brane pod uwagę zarówno przy obliczaniu sieci LAN, jak i przy obliczaniu SFP. W każdym razie połączenie światłowodowe jest często używane jako łącze w górę (patrz poniżej).

Zauważ również, że w tym przypadku mówimy o oryginalnym standardzie SFP; dane dotyczące złączy w formacie SFP + są wskazane osobno (patrz poniżej).

SFP+ (światłowód)

Liczba portów optycznych portów SFP+, przewidziana w konstrukcji przełącznika. Należy zaznaczyć, że chodzi o zwykłe porty sieciowe; wejścia Uplink również mogą używać tego interfejsu, jednak ich liczba jest podawana osobno nawet w tym przypadku (patrz poniżej).

Ogólne zalety włókna optycznego w porównaniu z konwencjonalnym kablem Ethernet to większy zasięg i niewrażliwość na zakłócenia elektromagnetyczne. A konkretniej SFP+ jest rozwinięciem oryginalnego standardu SFP; w przełącznikach takie złącza zwykle działają z prędkością 10 GB/s. Jeśli chodzi o liczbę takich portów, pomimo wszystkich swoich zalet, włókno optyczne w sprzęcie sieciowym jest używane dość rzadko. Dlatego największą popularnością cieszą się przełączniki na 1 - 2, rzadziej 4 złącza SFP+, choć może być ich więcej. Warto również wziąć pod uwagę, że w przełącznikach mogą być używane tzw. złącza combo, łączące SFP+ i RJ-45; obecność takich portów jest określana w uwagach, są one uwzględniane zarówno przy obliczaniu RJ-45, jak i przy obliczaniu SFP+.

Uplink

Liczba łączy nadrzędnych przewidzianych w konstrukcji przełącznika.

„Uplink” w tym przypadku nie jest typem, ale specjalizacją konektora: jest to nazwa interfejsu sieciowego, za pośrednictwem którego przełącznik (i podłączone do niego urządzenia sieciowe) komunikuje się z sieciami zewnętrznymi (w tym Internetem) lub siecią segmenty. Innymi słowy, jest to rodzaj „bramy”, przez którą przekazywany jest cały ruch z segmentu sieci obsługiwanego przez przełącznik. Uplink, w szczególności, może być używany do łączenia się z podobnym „przełącznikiem” (dla poziomej rozbudowy sieci) lub z urządzeniem wyższego poziomu (takim jak przełącznik główny).

W związku z tym liczba łączy w górę to maksymalna liczba połączeń zewnętrznych, które przełącznik może zapewnić bez użycia dodatkowego sprzętu. Konkretny typ takiego złącza może być inny, ale zwykle jest to jedna z odmian LAN lub SFP; zobacz „Typ łącza nadrzędnego”, aby uzyskać szczegółowe informacje.

Typ Uplink

Typ złącza (złączy) używanego przez przełącznik jako interfejs Uplink.

Więcej szczegółów na temat takiego interfejsu można znaleźć powyżej; tutaj zauważamy, że te same porty sieciowe są zwykle używane jako Uplink, co do podłączania poszczególnych urządzeń do przełącznika. Oto główne opcje takich złączy:

- Fast Ethernet - Złącze sieciowe LAN (na „skrętkę”) z obsługą prędkości do 100 Mbit/s. Taka prędkość jest uważana przez współczesne standardy za niską, natomiast port Uplink stawia zwiększone wymagania dotyczące przepustowości – w końcu przez niego przechodzi ruch ze wszystkich obsługiwanych przez przełącznik urządzeń. Dlatego w tej roli porty Fast Ethernet są używane głównie w niedrogich i starszych modelach.

- Gigabit Ethernet - złącze LAN z obsługą prędkości do 1 Gb/s. Ta prędkość jest często wystarczająca nawet dla dość rozbudowanej sieci, podczas gdy same złącza są stosunkowo niedrogie.

- 10Gigabit Ethernet - złącze LAN z obsługą prędkości do 10 Gb/s. Takie możliwości pozwalają na komfortową pracę nawet przy bardzo dużym natężeniu ruchu, jednak znacząco wpływają na cenę przełącznika. Dlatego ta opcja jest rzadkością, głównie w modelach z wyższej półki.

- SFP. Złącze do kabla światłowodowego obsługujące prędkości rzędu 2,7 Gb/s. Wyższe prędkości występują również wśród standardów Ethernet, ale światłowód ma ważną zaletę: jest całkowicie niewrażliwy na zakłócenia elektromagnetyczne.

- SFP+. Ewolucja opisanego powy...żej standardu SFP, w którym teoretyczna maksymalna prędkość wzrosła do 16 Gb/s. Najbardziej zaawansowany dostępny obecnie interfejs sieciowy ogólnego przeznaczenia - ale także najdroższy. Obecność takich złączy Uplink jest więc typowa głównie dla modeli z wyższej półki z dużą liczbą portów.

Należy pamiętać, że projekt może przewidywać kilka typów łączy nadrzędnych jednocześnie, w którym to przypadku są one rejestrowane przez ukośną linię - na przykład SFP / Gigabit Ethernet. W tym przypadku możemy mówić zarówno o pojedynczych portach, jak i połączonych złączach zdolnych do pracy w jednym z dwóch trybów – w zależności od podłączonego kabla. Te szczegóły należy wyjaśnić osobno.

Port konsolowy

Obecność portu konsoli w przełączniku. Złącze to służy do sterowania ustawieniami urządzenia z osobnego komputera, który pełni rolę panelu sterowania - konsoli. Zaletą tego typu operacji jest to, że dostęp do funkcji przełącznika jest niezależny od warunków sieciowych; ponadto możesz użyć specjalnych narzędzi na konsoli, które zapewniają bardziej rozbudowane możliwości niż zwykły interfejs sieciowy lub protokoły sieciowe (patrz „Sterowanie”). Najczęściej port konsoli wykorzystuje złącze RS-232.

Podstawowe funkcje

- Serwer DHCP. Funkcja ułatwiająca sterowanie adresami IP urządzeń podłączonych do przełącznika. Prawidłowa praca urządzenia sieciowego jest niemożliwa bez własnego adresu IP; a obsługa DHCP umożliwia przypisanie tych adresów ręcznie lub w pełni automatycznie. W takim przypadku administrator może ustawić dodatkowe parametry dla trybu automatycznego (zakres adresów, maksymalny czas użytkowania jednego adresu). I nawet w trybie całkowicie ręcznym praca z adresami odbywa się tylko za pomocą samego przełącznika (podczas gdy bez DHCP parametry te musiałyby być zapisane w ustawieniach każdego urządzenia w sieci).

- Wsparcie sztaplowania. Możliwość obsługi urządzenia w trybie stosu. Stos składa się z kilku przełączników, postrzeganych przez sieć jako jeden „przełącznik”, z jednym adresem MAC, jednym adresem IP i całkowitą liczbą złączy równą całkowitej liczbie portów we wszystkich zaangażowanych urządzeniach. Funkcja ta jest przydatna, jeśli chcesz zbudować dużą sieć, w której brakuje możliwości jednego „przełącznika”, ale nie chcesz komplikować topologii.

- Agregacja łączy. Przełącz obsługę technologii agregacji łączy. Technologia ta pozwala na połączenie kilku równoległych fizycznych kanałów komunikacyjnych w jeden logiczny, co zwiększa szybkość i niezawodność połączenia. Mówiąc najprościej, przełącznik z taką funkcją można podłączyć do innego urządzenia (na p...rzykład routera) nie jednym kablem, ale dwoma lub nawet kilkoma kablami jednocześnie. W tym przypadku wzrost prędkości następuje z powodu sumowania przepustowości wszystkich kanałów fizycznych; jednak ogólna prędkość może być mniejsza niż suma prędkości - z drugiej strony łączenie kilku stosunkowo wolnych złączy jest często tańsze niż używanie sprzętu z bardziej zaawansowanym pojedynczym interfejsem. Wzrost niezawodności odbywa się, po pierwsze, poprzez rozłożenie całkowitego obciążenia na oddzielne kanały fizyczne, a po drugie, dzięki „gorącej” nadmiarowości: awaria jednego portu lub kabla może zmniejszyć prędkość, ale nie prowadzi do całkowitego przerwanie połączenia, ale po wznowieniu działania kanał jest automatycznie aktywowany.
Należy zauważyć, że zarówno standardowy protokół LACP, jak i niestandardowe, zastrzeżone technologie mogą być używane do agregacji łączy (ta ostatnia jest typowa na przykład dla przełączników Cisco). Ponadto istnieje wiele alternatywnych nazw dla tej technologii — trunking portów, łączenie łączy itp. czasami różnica tkwi tylko w nazwie, czasami pojawiają się niuanse techniczne. Wszystkie te szczegóły należy wyjaśnić osobno.

- VLAN. Przełącznik obsługuje funkcję VLAN - wirtualne sieci lokalne. W tym przypadku znaczeniem tej funkcji jest możliwość tworzenia oddzielnych logicznych (wirtualnych) sieci lokalnych w ramach fizycznego „obszaru lokalnego”. W ten sposób można np. podzielić działy w dużej organizacji, tworząc dla każdego z nich własną sieć lokalną. Organizacja VLAN może zmniejszyć obciążenie sprzętu sieciowego, a także zwiększyć stopień ochrony danych.

- Ochrona pętli. Zabezpieczenie pętli w przełączniku. Pętlę w tym przypadku można opisać jako sytuację, w której ten sam sygnał jest wyzwalany w sieci w nieskończonej pętli. Może to wynikać z niewłaściwego okablowania, użycia nadmiarowych łączy i innych przyczyn, ale w każdym przypadku takie zjawisko może „uśpić” sieć, co oznacza, że jest wysoce niepożądane. Ochrona pozwala uniknąć pętli — zwykle poprzez wyłączenie zapętlonych portów.

- Ograniczenie szybkości dostępu. Możliwość ograniczenia szybkości wymiany danych dla poszczególnych portów przełącznika. Dzięki temu możliwe jest zmniejszenie obciążenia sieci i zapobieganie „zatykaniu” kanału przez poszczególne terminale.

Pamiętaj, że ta lista nie ogranicza się do: nowoczesne przełączniki mogą mieć inne funkcje.

Statyczny

Przypomnijmy, że routing jest definicją najlepszej ścieżki, wzdłuż której każdy pakiet danych może być dostarczony do odbiorcy. W tym celu wykorzystywane są specjalne tabele, które są przechowywane w pamięci sterującego urządzenia sieciowego z funkcją routingu. Zgodnie z metodą wypełniania tych tabel, procedura ta jest podzielona na dwa główne typy - statyczny i dynamiczny.

Routing statyczny to metoda, w której wszystkie trasy danych (wpisy w tablicy routingu) są ręcznie rejestrowane przez administratora; dotyczy to zarówno początkowego tworzenia tabeli, jak i wprowadzania w niej zmian w przypadku zmiany konfiguracji sieci. Główną zaletą tej metody jest minimalne obciążenie procesora przełącznika, co pozytywnie wpływa na szybkość i niezawodność sieci. Główne wady routingu statycznego wiążą się z koniecznością ręcznego sterowania. Tak więc im szersza sieć, tym bardziej złożone i pracochłonne jest zarządzanie nią; nieuwaga administratora może stać się dodatkowym powodem awarii; a diagnoza niektórych problemów jest zauważalnie trudna - na przykład w przypadku awarii na poziomie łącza trasa statyczna pozostaje widoczna jako aktywna, chociaż żadne dane nie są przesyłane.
Dynamika cen