Tryb nocny
Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Urządzenia pomiarowe   /   Multimetry

Porównanie Mastech MY65 vs Mastech MY64

Dodaj do porównania
Mastech MY65
Mastech MY64
Mastech MY65Mastech MY64
od 183 zł
Produkt jest niedostępny
od 136 zł
Produkt jest niedostępny
TOP sprzedawcy
Przyrządmultimetrmultimetr
Rodzajcyfrowycyfrowy
Rodzaje pomiarów
Wykonywane pomiary
napięcie
prąd
rezystancja
pojemność
 
częstotliwość
napięcie
prąd
rezystancja
pojemność
temperatura
częstotliwość
Specyfikacja
Rodzaj prąduAC / DCAC / DC
Rodzaj napięciastałe / przemiennestałe / przemienne
Napięcie DC min.200 mV200 mV
Napięcie DC max.1000 V1000 V
Dokładność pomiaru (V⁻)0.05 %0.5 %
Napięcie AC min.2000 mV2000 mV
Napięcie AC max.750 V750 V
Prąd DC min.2000 μA2000 μA
Prąd DC max.10 А10 А
Prąd AC min.2000 μA20000 μA
Prąd AC max.10 А10 А
Rezystancja min.200 Ohm200 Ohm
Rezystancja max.200 MOhm200 MOhm
Maks. wyświetlana wartość199991999
Szerokość bitowa wyświetlacza4 1/23 1/2
Funkcje i możliwości
Funkcje
tester tranzystorów
tester diod
pomiar ciągłości obwodu
wyłącznik czasowy
tester tranzystorów
tester diod
pomiar ciągłości obwodu
wyłącznik czasowy
Wyposażenie
akumulatorowe
sondy pomiarowe
akumulatorowe
sondy pomiarowe
Dane ogólne
Stopka
Zasilanieakumulatoroweakumulatorowe
Typ akumulatora9 V9 V
Wymiary195x95x55 mm188x93x50 mm
Waga366 g380 g
Data dodania do E-Katalogpaździernik 2016październik 2016

Wykonywane pomiary

Parametry, które mogą być mierzone przez urządzenie.

- Napięcie. Napięcie (różnica potencjałów między dwoma punktami w obwodzie), mierzone w woltach. Jeden z podstawowych parametrów elektrycznych, obsługiwany przez wszystkie typy przyrządów, z wyjątkiem oscyloskopów (patrz „Urządzenie”). Do pomiaru wykorzystywane jest połączenie równoległe. W urządzeniach analogowych (patrz „Rodzaj”) pomiar napięcia można przeprowadzić bez zasilania.

- Aktualny. Siła prądu przepływającego przez określony odcinek obwodu; mierzone w amperach. Istnieją dwa sposoby pomiaru aktualnej siły: tradycyjny i bezkontaktowy. Pierwszy jest dostępny w prawie wszystkich urządzeniach z funkcją amperomierza, w tym celu konieczne jest otwarcie obwodu i szeregowe przekształcenie urządzenia w szczelinę (ponadto przy analogowej zasadzie działania amperomierz nie potrzebuje zasilania). Druga metoda stosowana jest w cęgach prądowych (patrz "Urządzenie").W większości przypadków modele są w stanie mierzyć prąd stały i przemienny.

- Opór. Odporność określonego elementu na stały prąd elektryczny; mierzone w omach. Należy zauważyć, że w tym przypadku mówimy o tradycyjnych pomiarach, które nie wiążą się z ultrawysokimi rezystancjami charakterystycznymi dla izolacji (w izolacji parametr ten sp...rawdzany jest odrębną metodą, więcej szczegółów poniżej). Pomiary rezystancji wykonuje się w następujący sposób: na sondy urządzenia przykładane jest określone napięcie (niskie, w granicach kilku woltów), po czym są one podawane na miejsce pomiaru - oraz rezystancja badanego odcinka obwodu lub inne obiekt jest obliczany na podstawie prądu płynącego przez utworzony obwód. Dlatego do pracy w trybie omomierza wymagane jest zasilanie - nawet dla instrumentu analogowego.

- Pojemność. Pojemność kondensatora mierzy się w faradach (częściej mikrofaradach i innych jednostkach pochodnych). Sam pomiar odbywa się poprzez doprowadzenie do kondensatora prądu przemiennego. Funkcja ta może być przydatna zarówno do wyjaśnienia pojemności kondensatorów bez oznaczenia (początkowo nieoznaczonych lub z wymazanymi napisami), jak i do sprawdzenia jakości podpisanych części. Na kondensatorach oprócz pojemności nominalnej można wskazać maksymalne odchylenie od nominalnej; jeśli wyniki pomiarów wykraczają poza dopuszczalne odchylenie, lepiej nie używać części. Jeśli odchylenie nie jest wskazane, można założyć, że nie powinno ono przekraczać 10% wartości nominalnej. Na przykład dla części 0,5 μF zakres dopuszczalnych pojemności wyniesie 0,45 - 0,55 μF.

- Temperatura. Pomiar temperatury - zwykle zewnętrznym czujnikiem zdalnym, najczęściej na bagnecie. W elektrotechnice funkcja ta służy do sterowania trybem pracy części wrażliwych na przegrzanie lub które muszą działać w określonym trybie temperaturowym.

- Częstotliwość. Możliwość pomiaru częstotliwości sygnału elektrycznego jest typowa przede wszystkim dla oscyloskopów i skopmetrów, ale można ją również spotkać w innych typach przyrządów - tych samych multimetrach (patrz "Urządzenie"). Z reguły oznacza to możliwość wyświetlania określonych liczb odpowiadających częstotliwości w hercach.

- Cła. Jedną z podstawowych cech jednorodnego sygnału impulsowego jest współczynnik wypełnienia, a mianowicie stosunek jego okresu powtarzania do czasu trwania pojedynczego impulsu. Na przykład, jeśli po każdym impulsie 2 ms następuje przerwa 6 ms, to okres powtarzania sygnału będzie wynosił T = 6 + 2 = 8 ms, a współczynnik wypełnienia wyniesie S = 8/2 = 4. Nie należy mylić cykl pracy z cyklem pracy: Chociaż te możliwości opisują jedną właściwość sygnału, robią to na różne sposoby. Współczynnik wypełnienia jest odwrotnością współczynnika wypełnienia, czyli stosunku długości impulsu do okresu powtarzania (w naszym przykładzie będzie to 2/8 = 25%). Termin ten występuje głównie w źródłach angielskich i tłumaczonych, natomiast w elektrotechnice domowej przyjmuje się termin „cykl pracy”.

- Indukcyjność. Indukcyjność jest głównym parametrem roboczym każdej cewki indukcyjnej. Możliwość zmierzenia tego parametru jest ważna w świetle faktu, że specjaliści i radioamatorzy często samodzielnie wykonują cewki, a określenie charakterystyki części bez specjalnego urządzenia jest niezwykle trudne, jeśli nie niemożliwe. Zasada pomiaru indukcyjności jest podobna do określania pojemności kondensatora (patrz wyżej) - przepuszczania prądu przemiennego przez cewkę i śledzenia jego „odpowiedzi”. Jednak funkcja ta jest znacznie mniej powszechna niż pomiar pojemności.

- Rezystancja izolacji. Rezystancja izolacji przewodów elektrycznych na prąd przemienny. Izolacja z definicji ma wyjątkowo dużą rezystancję, więc tradycyjna metoda pomiaru rezystancji (przy niskim napięciu roboczym, patrz wyżej) nie ma tu zastosowania – prądy byłyby zbyt słabe i niemożliwe byłoby ich dokładne zmierzenie. Dlatego do sprawdzania materiałów izolacyjnych i innych dielektryków nie stosuje się omomierzy, ale specjalnych urządzeń - megaomomierzy (lub multimetrów obsługujących ten tryb). Charakterystyczną cechą megaomomierza jest wysokie napięcie robocze - setki, a nawet tysiące woltów. Na przykład do badania izolacji napięciem roboczym 500 V wymagane jest to samo napięcie megaomomierza, dla materiału 3000 V - urządzenie 1000 V itp., bardziej szczegółowo wymagania dla różnych rodzajów izolacji opisano w źródła specjalne. Aby osiągnąć to napięcie, może być wymagany zewnętrzny moduł wysokonapięciowy, ale wiele multimetrów obsługujących ten rodzaj pomiaru jest w stanie samodzielnie generować krótkotrwałe impulsy wysokiego napięcia z niskonapięciowych źródeł zasilania, takich jak baterie AA lub Krona (patrz " Typ Akumulatora"). Należy pamiętać, że podczas pracy z megaomomierzem należy szczególnie uważnie przestrzegać zasad bezpieczeństwa - ze względu na wysokie napięcie robocze.

- Moc. Moc prądu elektrycznego określają dwa podstawowe parametry - siła prądu i napięcie; z grubsza mówiąc, wolty należy pomnożyć przez ampery, wynikiem będzie moc w watach. Tak więc teoretycznie parametr ten można wyjaśniać bez specjalnej funkcji pomiaru mocy - wystarczy wyjaśniać napięcie i prąd. Jednak niektóre przyrządy pomiarowe mają specjalny tryb, który pozwala natychmiast zmierzyć zarówno podstawowe parametry, jak i automatycznie na ich podstawie obliczyć moc - jest to wygodniejsze i szybsze niż wykonywanie obliczeń osobno. Wiele z tych urządzeń to cęgi (patrz „Urządzenie”) i pomiar prądu przy wyznaczaniu mocy odbywa się w sposób bezkontaktowy, a napięcie mierzone jest klasyczną metodą stykową. Istnieją inne opcje projektowe - na przykład adapter do gniazdka: urządzenie elektryczne jest podłączone do gniazdka przez taki adapter, a multimetr pobiera dane dotyczące prądu i napięcia z adaptera. Przypominamy również, że moc czynna (użyteczna) prądu przemiennego nie zawsze jest równa pełnej – przy obciążeniu pojemnościowym i/lub indukcyjnym część mocy (moc bierna) jest „zużywana” przez kondensatory/cewki. Możesz przeczytać więcej o tych parametrach w dedykowanych źródłach, ale tutaj zauważamy, że różne modele multimetrów mogą mieć różne możliwości pomiaru różnych rodzajów mocy; te punkty nie zaszkodzą wyjaśnić przed zakupem z góry.

- Kąt fazowy. Pomiar stopnia przesunięcia fazowego dwóch sygnałów elektrycznych (lub parametrów sygnału). Specyficzne rodzaje i możliwości takich pomiarów są różne, najbardziej popularne są dwie opcje. Pierwszym z nich jest pomiar różnicy między fazami zasilania trójfazowego, przede wszystkim w celu oceny jego ogólnej jakości. Drugi to oszacowanie przesunięcia fazowego między prądem a napięciem, które występuje, gdy obciążenie reaktywne (pojemnościowe lub indukcyjne) jest przyłożone do źródła prądu przemiennego; stosunek mocy czynnej do mocy pozornej (współczynnik mocy, „cos phi”) bezpośrednio zależy od tego przesunięcia.

- Częstotliwość rotacji. W tym przypadku najczęściej mówimy o możliwości pomiaru prędkości obrotowej silnika spalinowego. W związku z tym takie modele są zwykle określane jako specjalistyczne multimetry samochodowe. Przeznaczone są głównie do diagnostyki i testowania silników nie posiadających elektronicznych układów zapłonowych. Do pomiaru z reguły należy dopasować multimetr do liczby cylindrów silnika i podłączyć go do układu zapłonowego (konkretna metoda podłączenia musi być określona w dokumentacji samochodu).

Zauważ, że nie wszystkie są wymienione na tej liście, ale tylko najpopularniejsze pomiary znalezione we współczesnych multimetrach i innych urządzeniach o podobnym przeznaczeniu. Oprócz nich projekt może przewidywać bardziej specyficzne funkcje - więcej szczegółów w rozdziale „Inne pomiary”.

Dokładność pomiaru (V⁻)

Dokładność pomiaru zapewniana przez przyrząd.

Zwyczajowo dokładność pomiaru multimetrów wskazuje się najmniejszym błędem (w procentach), jaki urządzenie jest w stanie zapewnić podczas pomiaru prądu stałego. Im mniejsza liczba w tym punkcie, tym odpowiednio wyższa dokładność. Jednocześnie podkreślamy, że jest to najmniejszy błąd (najwyższa dokładność), który zazwyczaj osiągany jest tylko w pewnym zakresie pomiarowym; w innych zakresach dokładność może być niższa. Np. jeżeli w zakresie „1 – 10 V” urządzenie podaje maksymalne odchylenie 0,5%, a w zakresie „10 – 50 V” – 1%, to w charakterystyce będzie wskazane 0,5%. Niemniej jednak, zgodnie z tym wskaźnikiem, całkiem możliwe jest ocenianie i porównywanie nowoczesnych multimetrów. Czyli urządzenie z mniejszym deklarowanym błędem z reguły i generalnie będzie dokładniejsze niż model o podobnych osiągach z większym błędem.

Dane dotyczące dokładności pomiarów w innych zakresach i trybach można podać w szczegółowej charakterystyce urządzenia. Jednak w praktyce ta informacja nie jest wymagana tak często - tylko w przypadku niektórych konkretnych zadań, w których zasadniczo konieczne jest poznanie możliwego błędu.

Prąd AC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć prąd przemienny (patrz „Rodzaj prądu”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach prądu. Minimalny prąd przemienny opisuje dokładnie dolny zakres, przeznaczony dla najsłabszych wartości prądu: na przykład, jeśli charakterystyka w tym punkcie wskazuje 500 μA, oznacza to, że dolny podzakres pozwala mierzyć prądy od 0 do 500 μA.

Warto wybierać według tego wskaźnika biorąc pod uwagę specyfikę planowanej aplikacji: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale szczególnie wysoka czułość prądowa nie jest wymagana do obsługa domowych sieci energetycznych.

Maks. wyświetlana wartość

Największa liczba, jaką może wyświetlić wyświetlacz DMM (patrz Typ).

Wskaźnik ten określa zakres, w jakim można dokonywać pomiarów bez zmiany ustawień. Tak więc, jeśli maksymalna liczba to 1999, pomiar można wykonać w zakresie od 0 do 1999 wybranych jednostek miary - na przykład od 0 do 1999 V, jeśli wybrane są wolty, od 9 do 1999 mA (1,999 A ) jeśli wybrano miliampery itp. Jednocześnie 1999 i mniej dla nowoczesnych przyrządów pomiarowych uważa się za raczej skromny wskaźnik, od 2000 do 3999 to średnia, 4000 - 9999 nie jest zła, a w najbardziej zaawansowanych modelach liczba ta przekracza 10000.

Zwróć uwagę, że maksymalna wyświetlana liczba jest bezpośrednio związana z pojemnością wyświetlacza - patrz poniżej.

Szerokość bitowa wyświetlacza

Szerokość bitowa wyświetlacza zainstalowanego w urządzeniu cyfrowym (patrz „Typ”).

Głębia bitowa to liczba znaków, które mogą być jednocześnie wyświetlane na ekranie. Od tego zależy bezpośrednio maksymalna wyświetlana liczba (patrz wyżej): na przykład, jeśli charakterystyka wskazuje na pojemność cyfr 4, to urządzenie ma wyświetlacz na 4 pełne cyfry i jest w stanie wyświetlić liczbę do 9999 włącznie. Istnieje jednak również bardziej szczegółowe oznaczenie - z ułamkiem, na przykład 3 1/2 lub 4 3/4. Oznacza to, że największa (lewa) cyfra w tym modelu jest niekompletna, a maksymalna cyfra, jaką może wyświetlić, jest mniejsza niż 9. W szczególności takie oznaczenie jest rozszyfrowywane w następujący sposób: liczba całkowita oznacza liczbę pełnych cyfr, licznik frakcja to maksymalna liczba wyświetlana w niepełnej cyfrze, mianownik to całkowita liczba wartości obsługiwanych przez niepełną cyfrę. Patrząc na powyższe przykłady, 3 1/2 oznacza czterocyfrowy wyświetlacz z maksymalną liczbą w 1999 roku: trzy pełne cyfry o maksymalnej wartości 9 plus jedna częściowa cyfra o maksymalnej wartości 1 i dwie opcje (1 i 0 ). Podobnie 4 3/4 odpowiada maksymalnej liczbie 39999, z 4 częściowymi cyframi (0, 1, 2, 3).
Mastech MY64 często porównują