Ekran dotykowy
Obecność w gadżecie ekranu dotykowego - podobnego do tych stosowanych w smartfonach i tabletach. Taki ekran zapewnia dodatkową wygodę: wiele funkcji jest łatwiejszych w obsłudze za pomocą dotknięć i gestów na wyświetlaczu niż za pomocą przycisków i innego sprzętu. Z drugiej strony
ekran dotykowy znacząco wpływa na koszt urządzenia w porównaniu do jego odpowiedników.
Rodzaj
Rodzaj wyświetlacza zainstalowanego w smartwatchu/smartbandzie.
-
Kolorowy. Takie wyświetlacze są często spotykane w klasycznych smartwatchach i są prawie obowiązkowe w przypadku smartwatchy z funkcją telefonu (patrz „Rodzaj”). Pozwalają wyświetlać różnorodne rodzaje informacji - nie tylko liczby czy wskaźniki, ale także zdjęcia, wideo, strony internetowe itp. Wady kolorowych wyświetlaczy w tym przypadku to wysokie zużycie energii (co negatywnie wpływa na autonomię urządzenia), a także dość wysoki koszt.
-
Monochromatyczny. Do tej kategorii należa dwa rodzaje ekranów. Pierwszy to jednokolorowe wyświetlacze, takie jak te używane czasami w miniaturowych odtwarzaczach MP3. Są zauważalnie gorsze od wersji pełnokolorowych pod względem wszechstronności i mogą wyświetlać tylko tekst i najprostszą grafikę, ale są tańsze i zużywają mniej energii. Tę opcję można znaleźć wśród smartbandów (bransoletek fitness) (patrz „Rodzaj”). Inny rodzaj monochromatycznego wyświetlacza to e-ink, „papier elektroniczny”, znany przede wszystkim z e-booków. Takie wyświetlacze mogą być używane nawet w smartwatchach - poza samymi kolorami, ustępują wersjom kolorystycznym jedynie częstotliwością odświeżania, zużywając przy tym dużo mniej energii. Główną wadą e-ink jest jego dość wysoki koszt.
- Brak. Całkowity
brak wyświetlacza jest typowy przede wszystkim dla smartbandów (pa
...trz „Rodzaj”): główną funkcją takich akcesoriów jest zbieranie informacji, a do powiadomień często wystarczają inne metody - najprostsze wskaźniki świetlne, sygnały dźwiękowe, wibracje itp. Innym specyficznym rodzajem urządzeń bez wyświetlacza jest smartwatch w postaci konwencjonalnego „zegara z wskazówkami”, uzupełniony o wskaźniki na tarczy i/lub inne środki powiadamiania.Rodzaj matrycy
— TFT. Najprostszy rodzaj matryc ciekłokrystalicznych stosowanych w wyświetlaczach kolorowych. Zapewniają stosunkowo niską, ale generalnie wystarczającą jakość obrazu, a jednocześnie są znacznie tańsze niż bardziej zaawansowane technologie. Nie wymagają podświetlenie - a dokładniej, podświetlenie jest częścią samego ekranu i włącza się wraz z nim. Spośród jednoznacznych niedociągnięć warto zauważyć, że wiele
matryc TFT ma raczej ograniczone kąty widzenia; jednakże wraz z poprawą technologii ta wada jest stopniowo eliminowana.
— IPS. Rodzaj matryc ciekłokrystalicznych zaprojektowany w celu wyeliminowania wad TFT. Istnieje wiele podgatunków
matryc IPS, ale wszystkie wyróżniają się wysoką jakością odwzorowania barw, doskonałą jasnością i szerokimi kątami widzenia. Wadą tej opcji jest stosunkowo wysoki koszt.
—
OLED. W tym przypadku ma się na myśli technologię stosowaną przy tworzeniu najprostszych wyświetlaczy monochromatycznych. Na takich ekranach każdy segment składający się na obraz to osobna dioda LED, co eliminuje potrzebę zewnętrznego podświetlenia. Kolor poświaty w różnych modelach może być różny, co pozwala nadać gadżetowi stylowy i oryginalny wygląd.
—
AMOLED. Ekrany oparte na matrycy z aktywnych organicznych diod elektroluminescencyjnych. Podobnie jak w przypadku różnych typów TFT, technologia ta umożli
...wia tworzenie kolorowych wyświetlaczy o wysokiej rozdzielczości. Jego kluczową cechą jest to, że ekran nie wymaga osobnego systemu podświetlenie - w matrycach AMOLED każdy piksel świeci samodzielnie, przez co pobór prądu jest nieco niższy. Jednocześnie takie ekrany wyróżniają się dobrą jakością odwzorowania barw, doskonałą jasnością i szerokimi kątami widzenia, są jednak znacznie droższe od TFT.
— Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED, zapewniająca bogatsze odwzorowanie barw i jasność, a także lepszą dokładność i szybkość reakcji na dotyk - wszystko z cieńszym wyświetlaczem i mniejszym zużyciem energii. Dodatkowo zmniejsza się stopień odbijania światła zewnętrznego, taka matryca daje mniej olśnienia i jest lepiej widoczna w świetle słonecznym.
— E-Ink (E-Paper). Wyświetlacze wykonane w technologii papieru elektronicznego; ponadto w tej kategorii znajdują się również ekrany typu Memory LCD. Klasyczny ekran E-Ink jest czarno-biały, nie jest wyposażony w podświetlenie (jednak można je osobno wbudować w gadżet), ma bardzo niską częstotliwość odświeżania i słabo sprawdza się nawet do stoperów, nie wspominając o filmach czy animowanych obrazkach. Z drugiej strony „papier elektroniczny” jest doskonale widoczny w jasnym świetle i ma bardzo niski pobór mocy: potrzebuje prądu tylko przy zmianie obrazu, a nieruchomy obraz pozostaje widoczny nawet po całkowitym wyłączeniu zasilania. Z kolei ekrany Memory LCD o tych samych zaletach prawie nie ustępują klasycznym matrycom LCD pod względem częstotliwości odświeżania, ale z wielu powodów nie otrzymały zbyt dużego rozpowszechnienia.
— Transflective. Specyficzny rodzaj matrycy LCD, zdolny do działania zarówno z własnym podświetleniem, jak i światłem odbitym. W jasnym świetle zewnętrznym (na przykład w słońcu) taki ekran skutecznie je odbija i nie wymaga osobnego podświetlenie - jednak wciąż jest w konstrukcji i włącza się przy słabym oświetleniu. Taki format pracy pozwala znacznie zmniejszyć zużycie energii w porównaniu do tradycyjnych ekranów LCD, gdzie obraz nie jest widoczny bez podświetlenie; ponadto ważną zaletą jest również dobra widoczność w jasnym świetle. Główną wadą tego typu matrycy jest jej wysoki koszt; ponadto są one w większości wykonane w postaci monochromatycznej.
— LTPO. Matryce OLED i AMOLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. Przy renderowaniu dynamicznych treści ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do maksymalnych wartości, przy oglądaniu statycznych obrazów automatycznie redukują ją do minimum. Sercem tej technologii jest podłoże LTPS z cienką warstwą tlenkową TFT nad podstawą tranzystorów cienkowarstwowych. Dynamiczna kontrola częstotliwości odświeżania jest zapewniona dzięki sterowaniu przepływem elektronów. Kluczową zaletą ekranów LTPO jest zmniejszone zużycie energii.Przekątna
Przekątna wyświetlacza zainstalowanego w gadżecie; w przypadku ekranów okrągłych jest wskazywana średnica.
Większy ekran z jednej strony okazuje się wygodniejszy w użytkowaniu, z drugiej znacząco wpływa na wymiary całego urządzenia, co jest szczególnie istotne w przypadku gadżetów na nadgarstek. Dlatego producenci wybierają rozmiar wyświetlacza zgodnie z przeznaczeniem i funkcjonalnością każdego konkretnego modelu - tak, aby na ekranie było wystarczająco dużo miejsca, a samo urządzenie nie było zbyt nieporęczne.
Warto też wspomnieć, że ekrany o podobnej przekątnej mogą mieć różne proporcje. Na przykład tradycyjne smartwatche są zwykle wyposażone w kwadratowe lub okrągłe matryce, podczas gdy w smartbandach (bransoletkach fitness) ekrany są często wydłużane.
Rozdzielczość ekranu
Rozmiar ekranu zegara w liniach (pikselach) w poziomie i w pionie. Generalnie jest to jeden ze wskaźników określających jakość obrazu: im wyższa rozdzielczość, tym wyraźniejszy i gładszy obraz na ekranie (przy tej samej przekątnej), tym mniej zauważalne są pojedyncze piksele. Z drugiej strony wzrost liczby pikseli wpływa na koszt wyświetlaczy, ich pobór mocy i wymagania stawiane platformie sprzętowej (wymagane jest mocniejsze „wypełnienie”, które samo w sobie będzie kosztować więcej). Ponadto specyfika korzystania z inteligentnych zegarków jest taka, że po prostu nie ma potrzeby instalowania w nich „fantazyjnych” ekranów o wysokiej rozdzielczości. Dlatego współczesne akcesoria na rękę wykorzystują wyświetlacze o stosunkowo niskiej rozdzielczości: na przykład 320x320 o przekątnej około 1,6 cala jest uważana za wystarczającą nawet w przypadku zegarków klasy premium.
PPI
Gęstość punktów na ekranie gadżetu, czyli liczba pikseli na cal matrycy w pionie lub poziomie.
Im wyższy PPI, tym wyższa szczegółowość ekranu, tym wyraźniejszy i gładszy obraz. Wskaźnik ten jednak ma odpowiedni wpływ na cenę. Dlatego im większa gęstość punktów, tym bardziej zaawansowany jest z reguły ten gadżet pod względem ogólnych możliwości. Jednak przy wyborze ekranu producenci biorą pod uwagę ogólny cel i funkcjonalność urządzenia; więc nawet niewielka liczba PPI zwykle nie przeszkadza w wygodnym użytkowaniu.
Ochrona tarczy
Materiał, z którego wykonana jest przezroczysta powłoka wyświetlacza.
-
Tworzywo sztuczne. Niedrogi, poza tym dość trwały i odporny na uderzenia materiał: nawet przy silnym uderzeniu plastik pęknie, a nie rozpadnie się na fragmenty. Jednocześnie na takiej powłoce łatwo pojawiają się zarysowania, więc z czasem nieuchronnie staje się ona mętna. Z tego powodu plastik znajduje się przede wszystkim w niedrogich gadżetach na rękę.
-
Szkło. W tym przypadku może to oznaczać zarówno klasyczne szkło silikatowe (takie samo jak np. w oknach), jak i kilka oryginalnych odmian szkieł odpornych na uderzenia, które nie należą do
szkła Gorilla Glass (patrz poniżej). Zwykłe szkło jest droższe od plastiku, ale niewiele droższe, a dzięki odporności na zarysowania wygląda lepiej i dłużej zachowuje przezroczystość. Głównymi wadami tego materiału są kruchość i skłonność do kruszenia się na ostre fragmenty po uderzeniu. Pozbawione tej wady w pewnym stopniu są szkła odporne na uderzenia, ale są one droższe. Według półki cenowej gadżetu można dość dokładnie określić, jaki rodzaj szkła jest w nim używany - zwykłe czy odporne na uderzenia.
-
Szafir. Powłoka wykonana z syntetycznego szafiru jest stosowana wyłącznie w gadżetach klasy premium - wynika to ze złożoności jego produkcji, a tym samym z wysokich kosztów. Od strony praktycznej szaf
...ir ma niezwykle wysoką odporność na zarysowania (takie szkło można zarysować tylko diamentem lub specjalnymi narzędziami), ale jednocześnie jest kruchy i łatwo pęka od uderzenia.
- Gorilla Glass. Rodzina odpornych na uderzenia szkieł stworzona przez firmę Corning i szeroko stosowana we współczesnej elektronice, w tym w gadżetach na rękę. Oprócz wytrzymałości, szkła Gorilla Glass mają również dobrą odporność na zarysowania, kosztując jednocześnie stosunkowo niedrogo (jak na standardy takiej powłoki), dlatego cieszą się tak dużą popularnością. Jednak specyficzne właściwości takiego szkła zależą od jego wersji; oto opcje, które są aktualne dla współczesnych urządzeń na rękę:
- Gorilla Glass v3. Najstarsza z aktualnych wersji, została wydana w 2013 roku. Niemniej jednak nawet taka powłoka jest zauważalnie lepsza od tradycyjnego szkła (nie wspominając o plastiku) pod względem przezroczystości i odporności na zarysowania.
- Gorilla Glass v4. Wersja wydana w 2014 roku. Kluczową cechą przy opracowywaniu tej powłoki był nacisk na odporność na uderzenia (podczas gdy poprzednie generacje skupiały się głównie na odporności na zarysowania). W efekcie szkło okazało się dwukrotnie mocniejsze niż w wersji 3, a jego grubość wynosiła zaledwie 0,4 mm.
- Gorilla Glass SR+. Pierwsza wersja Gorilla Glass, zaprojektowana specjalnie dla smartwatchy i innych miniaturowych gadżetów na rękę; wprowadzona w 2016 roku. Zdaniem twórców, odporność takich powłok na zarysowania jest zbliżona do szkła szafirowego, przy jednoczesnym zachowaniu głównych zalet Gorilla Glass - dużej wytrzymałości i przezroczystości. Ogólnie rzecz biorąc, dla tego materiału deklaruje się przewagę nad „alternatywnymi opcjami” o 70% pod względem wytrzymałości i o 25% pod względem właściwości optycznych.
- Gorilla Glass DX. Kolejny rodzaj szkła przeznaczony specjalnie do urządzeń na rękę. Został wydany w 2018 roku wraz z wersją DX+ (patrz poniżej). Zapowiadane są kluczowe ulepszenia w Gorilla Glass DX, w szczególności zwiększone właściwości antyrefleksyjne i wzrost poziomu kontrastu widzialnego obrazu o 50%; ta ostatnia pozwala między innymi zmniejszyć rzeczywistą jasność, a tym samym zużycie energii przez ekrany bez pogorszenia jakości obrazu, co jest szczególnie ważne w przypadku miniaturowych urządzeń na rękę. A materiał ten różni się od powłoki typu DX+ z jednej strony mniejszą odpornością na zarysowania, z drugiej zaś wyższymi właściwościami antyrefleksyjnymi.
- Gorilla Glass DX+. „Rówieśnica” oryginalnej wersji DX, należąca do tej samej specjalizacji - gadżety do noszenia na rękę i inne miniaturowe urządzenia. Jednocześnie DX+ ma wyższą odporność na zarysowania, ale ma nieco gorsze właściwości antyrefleksyjne. Poza tym te rodzaje powłoki są prawie identyczne.
Cechy dodatkowe
Wśród dodatkowych funkcji należy wyróżnić
wbudowany odtwarzacz,
czujnik światła,
Wi-Fi,
NFC, w tym z
płatnościami zbliżeniowymi,
akcelerometr,
aparat,
latarka (i jej
mocniejsza wersja). Szczegółowe informacje na temat każdej funkcji znajdują się poniżej:
— Wbudowany odtwarzacz. Obecność odtwarzacza w inteligentnym zegarku pozwala na wykorzystanie gadżetu do słuchania muzyki. W tym celu nie ma potrzeby łączenia się z telefonem. Piosenki będą odtwarzane bezpośrednio z zegarka. Dlatego te urządzenia muszą koniecznie mieć imponującą (jak zegarek) pojemność pamięci i różne sposoby połączenia (do połączenia ze słuchawkami).
— Czujnik światła. Czujnik monitorujący jasność światła otoczenia. Jednym z najpopularniejszych zastosowań tej funkcji jest automatyczna regulacja jasności wyświetlacza: w jasnym świetle zwiększa się, dzięki czemu obraz pozostaje widoczny, a o zmierzchu maleje, co zmniejsza zmęczenie oczu i zużycie energii. Ponadto mogą być zapewnione inne, bardziej specyficzne funkcje - na przykład włączanie ekranu podczas ściągania rękawa ubrania.
— Wi-Fi. Technologia pierwotnie używana do uzyskiwania dostępu do Internetu za pośrednictwem bez
...przewodowych punktów dostępowych, ale ostatnio również wykorzystywana do bezpośredniej komunikacji między dwoma urządzeniami (to połączenie ma kilka zalet w porównaniu z tradycyjnym Bluetooth). W gadżetach na rękę najczęściej podawana jest pierwsza opcja, chociaż znajduje się również druga. Ale konkretne sposoby korzystania z Wi-Fi mogą być różne w zależności od urządzenia: dostęp do stron internetowych i różnych usług internetowych, zdalna komunikacja z systemami inteligentnego domu, zdalne sterowanie aparatami cyfrowymi i innym sprzętem elektronicznym, transmisja przez Internet współrzędnych GPS (w smartwatchach dziecięcych) itp.
— NFC. Technologia komunikacji bezprzewodowej na krótkie odległości (do 10 cm). Metody jej użycia, w tym w urządzeniach na rękę, mogą być różne. Jedną z najpopularniejszych opcji jest użycie gadżetu do płatności zbliżeniowych (patrz poniżej); jednak warto osobno sprawdzić dostępność takiej funkcji. Inną powszechną funkcją jest uproszczenie połączenia Bluetooth ze smartfonem lub tabletem, który również ma NFC: zamiast ręcznego ustawiania wystarczy podnieść jedno urządzenie do drugiego - a one automatycznie rozpoznają się i nawiążą połączenie, pozostaje tylko potwierdzić połączenie. Mogą również być przewidziane inne metody interakcji - na przykład uruchomienie aplikacji „sportowej” na smartfonie po podniesieniu do niego bransoletki fitness. I teoretycznie dozwolone są bardziej specyficzne opcje wykorzystania NFC - na przykład jako biletu okresowego, przepustki itp. Właściwie w wielu modelach gadżetów na rękę zestaw tych sposobów ogranicza się tylko do zainstalowanych aplikacji.
— Płatności zbliżeniowe. Możliwość wykorzystania gadżetu naręcznego do dokonania płatności zbliżeniowych. Funkcja ta jest dostępna wyłącznie w modelach z NFC (patrz wyżej); w rzeczywistości zamienia urządzenie w odpowiednik karty kredytowej z chipem i pozwala płacić bez wyjmowania karty z portfela - wystarczy przyłożyć rękę z gadżetem do czytnika terminala. Zapewnia to nie tylko dodatkową wygodę, ale także bezpieczeństwo. Tak więc podniesienie zegarka do terminala jest zdecydowanie łatwiejsze niż sięgnięcie do kieszeni lub torebki po kartę kredytową - zwłaszcza jeśli ma się zajęte ręce podczas zakupów. I zamiast tradycyjnej karty, z której atakujący może skopiować podstawowe informacje, takie jak numer, kod CVV i datę ważności (na przykład „szpiegując” je wbudowaną kamerą), używany jest gadżet, który przekazuje te informacje w postaci zaszyfrowanej i nigdzie ich jawnie nie wyświetla.
Aby skorzystać z płatności zbliżeniowej z reguły trzeba zsynchronizować gadżet ze smartfonem i ustawić taką płatność w systemie Google Wallet lub Apple Pay. Ale do dokonywania płatności smartfon nie jest już potrzebny - wiele urządzeń na rękę jest w stanie pełnić tę funkcję całkowicie autonomicznie (chociaż warto tę możliwość wyjaśnić osobno)
— Akcelerometr. Czujnik wykrywający kierunek grawitacji, a także przyspieszenie działające na urządzenie. Pozwala to na śledzenie dwóch parametrów jednocześnie: aktualnej pozycji w przestrzeni i różnych wpływów fizycznych (takich jak stukanie lub potrząsanie). Najczęściej akcelerometr odpowiada za dwie główne funkcje: automatyczne obracanie obrazu na ekranie, a także działanie krokomierza (w rzeczywistości obecność takiego czujnika prawie gwarantuje obecność krokomierza, patrz „Możliwe pomiary”). Możliwe są jednak również inne sposoby wykorzystania tego czujnika - na przykład odrzucenie połączenia podczas potrząsania zegarem, włączanie ekranu podczas stukania w kopertę itp.
— Żyroskop. Urządzenie, które umożliwia śledzenie zwrotów gadżetu w jednym lub drugim kierunku. Zwykle używany w połączeniu z akcelerometrem. Żyroskop poprawia dokładność pozycjonowania w przestrzeni (co pozytywnie wpływa na jakość krokomierza i inne podobne funkcje), a także daje dodatkowe możliwości sterowania gestami. Jednak konkretne zastosowania tego czujnika w dużym stopniu zależą od modelu.
— Aparat. Zegarek/bransoletka ma wbudowany aparat; jego lokalizacja i przeznaczenie różnią się w zależności od modelu. W niektórych urządzeniach obiektyw znajduje się na przednim panelu, nad ekranem, a sprawa ogranicza się tylko do komunikacji wideo i robienia selfie, podczas gdy inne pozwalają na robienie „klasycznych” zdjęć czy nagrywanie filmów. Jednocześnie należy zauważyć, że w każdym przypadku specyfikacje takich aparatów są zwykle bardzo skromne - na przykład rozdzielczość rzadko przekracza 2 megapiksele, a autofokus jest zapewniony tylko w najbardziej zaawansowanych modelach.
— Latarka. Funkcja ta występuje głównie w smartwatchach dla dzieci, nie zastępuje ona pełnowartościowej latarki (patrz poniżej), a jedynie daje namiastkę podświetlenia w bezpośredniej bliskości gadżetu. Podstawę latarki stanowi dioda, ale jej moc jest dość słaba, aby oświetlić, powiedzmy, drogę. Jednakże ta moc wystarczy by odnaleźć np. dziurkę od klucza w ciemności.
— Pełnowartościowa latarka. Pełnowartościowa latarka, mimo swojej "głośnej" nazwy, składa się z samej diody. Jednakże jej cechy konstrukcyjne umożliwiają uzyskanie dostatecznej wiązki światła do dobrego oświetlenia do kilku metrów. Naturalnie, latarka ta jest pełnowartościowa jedynie na tle samego smartwatcha i nie da się jej porównać z prawdziwą latarką jako osobnym urządzeniem.Pojemność akumulatora
Pojemność akumulatora normalnie zainstalowanego w gadżecie.
Teoretycznie im większa pojemność, tym dłuższy czas pracy może zapewnić bateria bez doładowania. Jednak w praktyce autonomia gadżetu zależy również od jego poboru mocy, a determinuje go specyfikacja wyświetlacza i „wypełnienie”. Dlatego pod względem pojemności baterii można porównywać tylko modele tego samego rodzaju o bardzo podobnych właściwościach; a dla dokładnej oceny autonomii lepiej skupić się na bezpośrednio deklarowanym czasie pracy w takim czy innym trybie (patrz poniżej).
Należy również powiedzieć, że baterie o dużej pojemności są nieuchronnie dość ciężkie i nieporęczne. Tak więc pojemność baterii instalowanych w gadżetach na rękę jest również mocno ograniczona wymiarami i wagą.