Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie be quiet! Dark Rock TF vs be quiet! Dark Rock Pro 3

Dodaj do porównania
be quiet! Dark Rock TF
be quiet! Dark Rock Pro 3
be quiet! Dark Rock TFbe quiet! Dark Rock Pro 3
od 349 zł
Produkt jest niedostępny
od 389 zł
Produkt jest niedostępny
TOP sprzedawcy
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wydmuch powietrzaw dół (na płytę główną)
Dwuwieżowa konstrukcja
TDP220 W250 W
Wentylator
Liczba wentylatorów2 szt.2 szt.
Średnica wentylatora
135 mm /135x135x25/
135 mm /120 mm/
Rodzaj łożyskahydrodynamiczne (Fluid Dynamic Bearing)hydrodynamiczne (Fluid Dynamic Bearing)
Maks. prędkość obrotowa1400 obr./min1700 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza113.8 CFM113.8 CFM
Średni czas bezawaryjnej pracy68 tys. h300 tys. h
Możliwość wymiany
Poziom hałasu27 dB26 dB
Typ podłączenia4-pin4-pin
Radiator
Liczba rurek cieplnych6 szt.7 szt.
Kontakt rurek cieplnychpośredni
Materiał radiatoraaluminium / miedźaluminium / miedź
Materiał podstawymiedź niklowana
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
 
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Wymiary163x140x131 mm150x137x163 mm
Wysokość131 mm163 mm
Waga810 g1197 g
Data dodania do E-Kataloggrudzień 2015sierpień 2014

Wydmuch powietrza

Kierunek, w którym strumień powietrza wychodzi z chłodnicy aktywnej (patrz „Rodzaj”).

Parametr ten dotyczy przede wszystkim modeli używanych z procesorami, warianty mogą być następujące:

— W bok (rozpraszanie). Ten format pracy jest typowy dla chłodnic o tzw. konstrukcji wieżowej. W takich modelach wentylator jest instalowany prostopadle do podłoża stykającego się z procesorem, dzięki czemu strumień powietrza porusza się równolegle do płyty głównej. Zapewnia to maksymalną wydajność: ogrzane powietrze nie wraca do procesora i innych elementów systemu, lecz jest rozpraszane w obudowie (i prawie natychmiast wychodzi na zewnątrz, jeśli komputer ma przynajmniej jeden wentylator obudowy). Główną wadą tego wariantu jest wysoka wysokość konstrukcji, która może skomplikować jej umieszczenie w niektórych obudowach. Jednak w większości przypadków ten punkt nie jest kluczowy – zwłaszcza jeśli chodzi o potężny układ chłodzenia przeznaczony do zaawansowanego systemu z wydajnym „gorącym” procesorem. Tak więc to właśnie rozpraszanie poprzeczne jest obecnie najpopularniejszym wariantem - zwłaszcza w chłodnicach o maksymalnym TDP 150 W i wyższym (choć mniej wydajne modele często używają tego układu).

— W dół (na płytę główną). Ten format pracy pozwala na „ułożenie” wentylatora wraz z radiatorem prosto na płycie głównej, znacznie zmniejszając wysokość całej chłodnicy (w porównaniu do modeli wykorzystujących nadmuch boczny). Z drugiej strony ten format pracy nie...jest zbyt wydajny – wszak zanim rozproszy się po obudowie, gorące powietrze znów obdmuchuje płytę z procesorem. Tak więc w dzisiejszych czasach ten wariant jest stosunkowo rzadki i występuje głównie w chłodnicach o małej mocy i dopuszczalnym TDP do 150 W. A na takie modele należy zwracać uwagę głównie wtedy, gdy w obudowie jest mało miejsca, a niska wysokość chłodnicy jest ważniejsza niż wysoka wydajność.

Dwuwieżowa konstrukcja

Funkcja występująca w niektórych aktywnych chłodnicach procesorowych (patrz „Przeznaczenie”).

Aby zapoznać się z ogólnym układem wieży, patrz "Wydmuch strumienia powietrza" poniżej. Konstrukcja dwuwieżowa oznacza, że ​​chłodnica ma dwie jednostki robocze – czyli dwa wentylatory i dwa radiatory. W związku z tym, w konstrukcji jest więcej rurek cieplnych niż w modelach z jedną wieżą - co najmniej jest ich 4, a częściej 5 - 6 lub nawet więcej. Taki układ może znacznie zwiększyć wydajność chłodzenia; z drugiej strony zauważalnie wpływa on również na wymiary, wagę i cenę.

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Średni czas bezawaryjnej pracy

Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.

Liczba rurek cieplnych

Liczba rurek cieplnych w układzie chłodzenia

Rura cieplna to szczelna konstrukcja zawierająca ciecz o niskiej temperaturze wrzenia. Gdy jeden koniec rury jest podgrzewany, ciecz ta odparowuje i skrapla się na drugim końcu, pobierając ciepło ze źródła ogrzewania i przekazując je do chłodnicy. Obecnie takie urządzenia są szeroko stosowane głównie w układach chłodzenia procesorów (patrz „Przeznaczenie”) - łączą one podłoże, które ma bezpośredni kontakt z procesorem, i radiator aktywnej chłodnicy. Producenci dobierają liczbę rurek w oparciu o ogólną wydajność chłodnicy (patrz „Maksymalny TDP”); jednak modele o podobnych wartościach TDP mogą nadal znacząco różnić się tym parametrem. W takich przypadkach warto uwzględniać następujące punkty: wzrost liczby rurek cieplnych zwiększa efektywność wymiany ciepła, lecz także zwiększa gabaryty, wagę i koszt całej konstrukcji.

Jeśli chodzi o liczby, w najprostszych modelach przewidziano 1 - 2 rurki cieplne, a w najbardziej zaawansowanych i wydajnych układach procesorowych liczba ta może wynosić 7 lub więcej.

Kontakt rurek cieplnych

Rodzaj kontaktu między rurkami cieplnymi znajdującymi się w radiatorze układu chłodzenia a chłodzonymi podzespołami (zwykle procesorem). Aby uzyskać więcej informacji na temat rurek cieplnych, patrz powyżej, a rodzaje kontaktu mogą być następujące:

- Pośredni. Klasyczna konstrukcja: rurki cieplne przechodzą przez metalową (zwykle aluminiową) podeszwę, która bezpośrednio przylega do powierzchni chipa. Zaletą tego kontaktu jest najbardziej równomierny rozkład ciepła pomiędzy rurkami i to niezależnie od fizycznych rozmiarów samego chipa (najważniejsze, że nie jest on większy od podeszwy). Jednocześnie dodatkowa część między procesorem a rurkami nieuchronnie zwiększa opór cieplny i nieco zmniejsza ogólną wydajność chłodzenia. W wielu systemach, zwłaszcza high-endowych, tę wadę rekompensują różne rozwiązania konstrukcyjne (przede wszystkim maksymalnie szczelne połączenie rurek z podeszwą), lecz to z kolei wpływa na koszt.

- Bezpośredni. Przy kontakcie bezpośrednim, rurki cieplne przylegają bezpośrednio do schłodzonego chipa, bez dodatkowej podeszwy; w tym celu powierzchnia rurek z pożądanej strony jest szlifowana do płaskości. Ze względu na brak części pośrednich opór cieplny w punktach styku rur jest minimalny, a jednocześnie sama konstrukcja radiatora okazuje się prostsza i tańsza niż w przypadku kontaktu pośredniego. Z drugiej strony między rurkami cieplnymi występują szczeliny, czasem...dość znaczne – w efekcie powierzchnia obsługiwanego chipa jest chłodzona nierównomiernie. Jest to częściowo kompensowane obecnością podłoża (w tym przypadku wypełnia ono te szczeliny) i zastosowaniem pasty termicznej, jednak pod względem równomierności odprowadzania ciepła, kontakt bezpośredni jest nadal nieuchronnie gorszy od kontaktu pośredniego. Dlatego ten wariant spotykany jest głównie w niedrogich chłodnicach, choć może on być również stosowany w dość wydajnych rozwiązaniach.

Materiał podstawy

Materiałem, z którego wykonano podstawę układu chłodzenia, jest powierzchnia stykająca się bezpośrednio z chłodzonym komponentem (najczęściej z procesorem). Parametr ten jest szczególnie ważny w przypadku modeli z rurkami cieplnymi (patrz wyżej), chociaż może być podawany dla chłodnic bez tej funkcji. Warianty mogą być następujące: aluminium, aluminium niklowane, miedź, miedź niklowana. Poniżej podano więcej szczegółów na ich temat.

- Aluminium. Tradycyjny, najpopularniejszy materiał na podstawę. Przy stosunkowo niskich kosztach aluminium ma dobrą przewodność cieplną, jest łatwe do szlifowania (niezbędnego do dokładnego dopasowania) i jest odporne na zarysowania i inne nierówności, a także korozję. Co prawda pod względem skuteczności odprowadzania ciepła materiał ten wciąż ustępuje miedzi - jednak staje się to zauważalne głównie w zaawansowanych systemach, które wymagają jak największej przewodności cieplnej.

- Miedź. Miedź jest znacznie droższa niż aluminium, lecz jest to rekompensowane wyższą przewodnością cieplną, a tym samym wydajnością chłodzenia. Zauważalne wady tego metalu obejmują pewną skłonność do korozji pod wpływem wilgoci i niektórych substancji. Dlatego czysta miedź jest używana stosunkowo rzadko - częściej stosuje się podstawy niklowane (patrz poniżej).

- Miedź niklowana. Podstawa miedziana z...dodatkowym niklowaniem. Taka powłoka zwiększa odporność na korozję i zarysowania, przy czym prawie nie wpływa na przewodność cieplną podstawy oraz wydajność pracy. Co prawda, ta cecha nieco podnosi cenę chłodnicy, lecz występuje ona głównie w high-endowych układach chłodzenia, gdzie ten punkt jest prawie niewidoczny na tle całkowitego kosztu urządzenia.

- Niklowane aluminium. Podstawa aluminiowa z dodatkowym niklowaniem. Ogólnie o aluminium, patrz wyżej, a powłoka zwiększa odporność radiatora na korozję, zarysowania i nierówności. Z drugiej strony ma to wpływ na koszt podczas gdy w praktyce do wydajnej pracy często wystarcza czyste aluminium (zwłaszcza, że sam ten metal jest bardzo odporny na korozję). Dlatego ta odmiana nie zyskała na popularności.
Dynamika cen
be quiet! Dark Rock TF często porównują
be quiet! Dark Rock Pro 3 często porównują