Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie Deepcool Gamma Archer Pro vs Zalman CNPS10X Optima

Dodaj do porównania
Deepcool Gamma Archer Pro
Zalman CNPS10X Optima
Deepcool Gamma Archer ProZalman CNPS10X Optima
od 54 zł
Produkt jest niedostępny
od 148 zł
Wkrótce w sprzedaży
TOP sprzedawcy
Główne
Pakiet termiczny 110 w. Automatyczna regulacja prędkości obrotu ostrzy.
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie CPUchłodzenie CPU
Wydmuch powietrzaw dół (na płytę główną)w bok (rozpraszanie)
TDP110 W
Wentylator
Liczba wentylatorów1 szt.1 szt.
Średnica wentylatora120 mm120 mm
Rodzaj łożyskahydrodynamicznehydrodynamiczne
Min. prędkość obrotowa900 obr./min1000 obr./min
Maks. prędkość obrotowa1600 obr./min1700 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza55.5 CFM
Możliwość wymiany
Min. poziom hałasu18 dB17 dB
Poziom hałasu21 dB28 dB
Typ podłączenia4-pin4-pin
Radiator
Liczba rurek cieplnych4 szt.
Kontakt rurek cieplnychbezpośredni
Materiał radiatoraaluminiumaluminium
Materiał podstawyaluminium
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
 
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 1151 / 1151 v2
Intel 1200
Dane ogólne
Rodzaj mocowaniazatrzaskidwustronne (backplate)
Wymiary124x121x66 mm152x132x85 mm
Wysokość66 mm152 mm
Waga315 g630 g
Data dodania do E-Kataloggrudzień 2015czerwiec 2012

Wydmuch powietrza

Kierunek, w którym strumień powietrza wychodzi z chłodnicy aktywnej (patrz „Rodzaj”).

Parametr ten dotyczy przede wszystkim modeli używanych z procesorami, warianty mogą być następujące:

— W bok (rozpraszanie). Ten format pracy jest typowy dla chłodnic o tzw. konstrukcji wieżowej. W takich modelach wentylator jest instalowany prostopadle do podłoża stykającego się z procesorem, dzięki czemu strumień powietrza porusza się równolegle do płyty głównej. Zapewnia to maksymalną wydajność: ogrzane powietrze nie wraca do procesora i innych elementów systemu, lecz jest rozpraszane w obudowie (i prawie natychmiast wychodzi na zewnątrz, jeśli komputer ma przynajmniej jeden wentylator obudowy). Główną wadą tego wariantu jest wysoka wysokość konstrukcji, która może skomplikować jej umieszczenie w niektórych obudowach. Jednak w większości przypadków ten punkt nie jest kluczowy – zwłaszcza jeśli chodzi o potężny układ chłodzenia przeznaczony do zaawansowanego systemu z wydajnym „gorącym” procesorem. Tak więc to właśnie rozpraszanie poprzeczne jest obecnie najpopularniejszym wariantem - zwłaszcza w chłodnicach o maksymalnym TDP 150 W i wyższym (choć mniej wydajne modele często używają tego układu).

— W dół (na płytę główną). Ten format pracy pozwala na „ułożenie” wentylatora wraz z radiatorem prosto na płycie głównej, znacznie zmniejszając wysokość całej chłodnicy (w porównaniu do modeli wykorzystujących nadmuch boczny). Z drugiej strony ten format pracy nie...jest zbyt wydajny – wszak zanim rozproszy się po obudowie, gorące powietrze znów obdmuchuje płytę z procesorem. Tak więc w dzisiejszych czasach ten wariant jest stosunkowo rzadki i występuje głównie w chłodnicach o małej mocy i dopuszczalnym TDP do 150 W. A na takie modele należy zwracać uwagę głównie wtedy, gdy w obudowie jest mało miejsca, a niska wysokość chłodnicy jest ważniejsza niż wysoka wydajność.

TDP

Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).

TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).

Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP do 100 W, najbardziej zaawansowane — do 250 W i nawet więcej.

Min. prędkość obrotowa

Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).

Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Możliwość wymiany

Możliwość wymiany standardowego wentylatora przez samego użytkownika - bez ingerencji serwisu lub specjalistów. Maksimum które może być wymagane do takiej procedury, to posiadanie najprostszych narzędzi, np. śrubokrętu; czasami są one dostarczane z układem chłodzenia.

Wentylator, jako najbardziej mobilna część każdego układu chłodzenia, jest bardziej podatny na awarie i zepsucia. W takich przypadkach taniej (i częściej - mądrzej) jest wymienić tylko tę część, niż kupować zupełnie nowy układ. Ponadto, jeśli chcesz, możesz wymienić sprawny wentylator - na przykład na mocniejszy lub mniej hałaśliwy.

Min. poziom hałasu

Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.

Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.

Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.

Poziom hałasu

Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.

Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:

20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.

Liczba rurek cieplnych

Liczba rurek cieplnych w układzie chłodzenia

Rura cieplna to szczelna konstrukcja zawierająca ciecz o niskiej temperaturze wrzenia. Gdy jeden koniec rury jest podgrzewany, ciecz ta odparowuje i skrapla się na drugim końcu, pobierając ciepło ze źródła ogrzewania i przekazując je do chłodnicy. Obecnie takie urządzenia są szeroko stosowane głównie w układach chłodzenia procesorów (patrz „Przeznaczenie”) - łączą one podłoże, które ma bezpośredni kontakt z procesorem, i radiator aktywnej chłodnicy. Producenci dobierają liczbę rurek w oparciu o ogólną wydajność chłodnicy (patrz „Maksymalny TDP”); jednak modele o podobnych wartościach TDP mogą nadal znacząco różnić się tym parametrem. W takich przypadkach warto uwzględniać następujące punkty: wzrost liczby rurek cieplnych zwiększa efektywność wymiany ciepła, lecz także zwiększa gabaryty, wagę i koszt całej konstrukcji.

Jeśli chodzi o liczby, w najprostszych modelach przewidziano 1 - 2 rurki cieplne, a w najbardziej zaawansowanych i wydajnych układach procesorowych liczba ta może wynosić 7 lub więcej.
Dynamika cen
Deepcool Gamma Archer Pro często porównują
Zalman CNPS10X Optima często porównują