Standardy Wi-Fi
Standardy Wi-Fi obsługiwane przez sprzęt. W dzisiejszych czasach oprócz nowoczesnych standardów
Wi-Fi 4 (802.11n),
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax) (jego odmiana
Wi-Fi 6E),
Wi-Fi 7 (802.11be) oraz
WiGig (802.11ad), można również spotkać wsparcie dla wcześniejszych wersji -
Wi- Fi 3 (802.11g), a nawet Wi-Fi 1 (802.11b). Oto bardziej szczegółowy opis każdej z tych wersji:
— Wi-Fi 3 (802.11g). Przestarzały standard, podobnie jak Wi-Fi 1 (802.11b), który odszedł w niepamięć. Był szeroko stosowany przed pojawieniem się Wi-Fi 4, obecnie jest używany głównie jako dodatek do nowszych wersji - w szczególności w celu zapewnienia kompatybilności z przestarzałym i niedrogim sprzętem. Pracuje na częstotliwości 2,4 GHz, maksymalna prędkość wymiany danych to 54 Mb/s.
— Wi-Fi 4 (802.11n). Pierwszy z powszechnie używanych standardów obsługujący 5 GHz; może pracować w tym zakresie lub w klasycznym 2,4 GHz. Warto podkreślić, że niektóre modele sprzętu Wi-Fi na ten standard wykorzystują tylko 5 GHz, dlatego są niekompatybilne z wcześniejszymi wersjami Wi-Fi. Maksymalna prędkość dla Wi-Fi 4 to 600 Mb/s; w nowoczesnych urządzeniach bezprzewodowych standard ten jest bardzo popularny, dopiero niedawno zaczął być wypierany na tej pozycji pr
...zez Wi-Fi 5.
— Wi-Fi 5 (802.11ac). Następca Wi-Fi 4, który ostatecznie przeniósł się na pasmo 5 GHz, co pozytywnie wpłynęło na niezawodność połączenia i prędkość transmisji danych: wynosi do 1,69 Gb/s na antenę i ogólnie do 6,77 Gb/s. Ponadto jest to pierwsza wersja, w której w pełni zaimplementowano technologię Beamforming (więcej informacji można znaleźć w „Funkcje i możliwości”).
— Wi-Fi 6, Wi-Fi 6E (802.11ax). Rozwinięcie Wi-Fi 5, które wprowadziło zarówno wzrost prędkości do 10 Gb/s, jak i szereg ważnych usprawnień. Jedną z najważniejszych nowości jest zastosowanie szerokiego zakresu częstotliwości – od 1 do 7 GHz; to w szczególności pozwala automatycznie wybierać najmniej obciążone pasmo częstotliwości, co pozytywnie wpływa na prędkość i niezawodność połączenia. Jednocześnie urządzenia Wi-Fi 6 mogą działać na klasycznych częstotliwościach 2,4 GHz i 5 GHz, a modyfikacja standardu Wi-Fi 6E może działać na częstotliwościach od 5,9 do 7 GHz; ogólnie uważa się, że urządzenia z obsługą Wi-Fi 6E pracują z częstotliwością 6 GHz, przy pełnej kompatybilności z wcześniejszymi standardami. Dodatkowo w tej wersji wprowadzono pewne usprawnienia dotyczące jednoczesnej pracy kilku urządzeń na tym samym kanale, w szczególności chodzi o technologię OFDMA. Dzięki temu Wi-Fi 6 daje najmniejszy ze współczesnych standardów spadek prędkości przy obciążonym powietrzu, a modyfikacja Wi-Fi 6E działająca na 6 GHz ma najmniej zakłóceń.
— Wi-Fi 7 (802.11be). Ten standard Wi-Fi zaczął być wdrażany w 2023 roku. Dzięki zastosowaniu modulacji 4096-QAM może on osiągać maksymalną teoretyczną prędkość transmisji danych do 46 Gb/s. Wi-Fi 7 obsługuje trzy pasma częstotliwości: 2,4 GHz, 5 GHz i 6 GHz. Maksymalna szerokość pasma standardu została zwiększona ze 160 MHz do 320 MHz — im szerszy kanał, tym więcej danych może on przesłać. Wśród interesujących nowości Wi-Fi 7 odnotowano opracowanie MLO (Multi-Link Operation) — za jego pomocą podłączone urządzenia wymieniają dane przy użyciu kilku kanałów i pasm częstotliwości jednocześnie, co jest szczególnie ważne w przypadku gier VR i online. Technologia Multiple Resource Unit została zaprojektowana w celu zminimalizowania opóźnień w komunikacji, gdy podłączonych jest wiele urządzeń klienckich. Nowy protokół 16x16 MIMO ma również na celu zwiększenie przepustowości przy dużej liczbie jednoczesnych połączeń, podwajając liczbę strumieni przestrzennych w porównaniu do poprzedniego standardu Wi-Fi 6.
— WiGig (802.11ad). Standard Wi-Fi wykorzystujący częstotliwość roboczą 60 GHz; prędkość przesyłania danych może wynosić do 10 Gb/s (w zależności od konkretnej wersji WiGig). Kanał 60 GHz jest znacznie mniej obciążony niż popularniejsze kanały 2,4 GHz i 5 GHz, co pozytywnie wpływa na niezawodność transmisji danych i zmniejsza opóźnienia; to ostatnie jest szczególnie ważne w grach i niektórych innych specjalistycznych zadaniach. Z drugiej strony, zwiększenie częstotliwości znacznie zmniejszyło zasięg połączenia (więcej szczegółów w punkcie „Zakres częstotliwości”), więc w praktyce ten standard nadaje się tylko do komunikacji w tym samym pomieszczeniu.
Należy pamiętać, że w praktyce prędkość przesyłania danych jest zwykle znacznie niższa od teoretycznego maksimum – zwłaszcza, gdy na tym samym kanale pracuje kilka urządzeń Wi-Fi. Warto również zauważyć, że różne standardy są ze sobą wstecznie kompatybilne (z ograniczeniem prędkości dla tego wolniejszego), pod warunkiem, że częstotliwości się pokrywają: na przykład 802.11ac może współpracować z 802.11n, lecz nie z 802.11g.Maks. prędkość przy 5 GHz
Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.
Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość
do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie
500 - 1000 MB/s, wskaźniki
1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie
ponad 2 GB/s.
WAN
Port WAN charakteryzuje zdolność urządzenia do odbioru sygnału przewodowego. Spotyka się modele z jednym portem bądź
dwoma portami WAN, a w rzadkich przypadkach może to być większa liczba podłączanych dostawców. Taka rozszerzona liczba złączy WAN wpływa na koszt i w związku z tym występuje częściej wśród routerów przeznaczonych do zastosowań profesjonalnych.
Jeśli chodzi o prędkość, przy wyborze urządzenia priorytetem jest prędkość wyjściowego portu LAN lub Wi-Fi. Natomiast szybsze porty WAN (
1 Gb/s,
2.5 Gb/s,
5 Gb/s,
10 Gb/s) pozwalają na rozłożenie obciążenia na kilka wyjść jednocześnie bez obniżania wskaźników szybkości, jak to może mieć miejsce w przypadku
portu WAN 100 Mb/s.
LAN
LAN w tym przypadku oznacza standardowe złącza sieciowe (znane jako RJ-45) przeznaczone do przewodowego połączenia lokalnych urządzeń sieciowych – komputerów, serwerów, dodatkowych punktów dostępowych itp. Liczba portów odpowiada liczbie urządzeń, do których można bezpośrednio podłączyć sprzęt drogą przewodową.
Pod względem prędkości zdecydowanie najpopularniejsze opcje to
100 Mb/s (Fast Ethernet) i
1 Gb/s (Gigabit Ethernet). Jednocześnie dzięki rozwojowi technologii powstaje coraz więcej urządzeń gigabitowych, choć w praktyce prędkość ta ma krytyczne znaczenie tylko przy przesyłaniu dużej ilości informacji. Jednocześnie niektóre modele, oprócz standardowej szybkości głównych portów LAN, mogą posiadać
port LAN 2,5 Gb/s, 5 Gb/s, a nawet 10 Gb/s przy zwiększonej przepustowości.
Liczba portów USB 2.0
Liczba
portów USB 2.0 przewidzianych w konstrukcji urządzenia.
USB pełni w tym przypadku rolę uniwersalnego interfejsu do podłączania urządzeń peryferyjnych do routera. Obsługiwane urządzenia USB i sposób ich używania mogą się różnić. Przykłady obejmują pracę z dyskiem flash pełniącym rolę urządzenia magazynującego do pracy w trybie FTP lub w trybie serwera plików (patrz „Funkcje/Możliwości”), łączenie się z drukarką w
trybie serwera wydruku (patrz ibid.), podłączanie modemu 3G (patrz „Wejście danych (port WAN)”) itp.
Mianowicie USB 2.0 umożliwia przesyłanie danych z prędkością do 480 Mb/s. To zauważalnie mniej niż w bardziej zaawansowanych standardach (począwszy od opisanego poniżej USB 3.2 Gen1), a zasilanie takich złączy jest niskie. Jednak nawet takie cechy często wystarczają, biorąc pod uwagę specyfikę korzystania z urządzeń Wi-Fi. Dodatkowo do portu USB 2.0 można podłączyć peryferia do nowszych wersji - najważniejsze, żeby zasilanie było wystarczające. Dlatego chociaż ten standard jest uważany za przestarzały, nadal jest szeroko stosowany w nowoczesnym sprzęcie bezprzewodowym. Istnieją nawet modele, które zapewniają
2 lub nawet więcej portów USB 2.0; pozwala to na jednoczesne korzystanie z kilku urządzeń zewnętrznych - na przykład modemu 3G i pendrive'a.
Liczba anten Wi-Fi
We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi
2,
3,
4, a nawet
więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.
W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.
Liczba anten 5 GHz
Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.
Szyfrowanie
- WPA. Protokół szyfrowania zaprojektowany jako tymczasowe rozwiązanie najbardziej krytycznych luk opisanego poniżej WEP. Wykorzystuje bardziej zaawansowany algorytm szyfrowania, a także szyfrowaną transmisję haseł. Jednak niezawodność tego standardu również okazała się niewystarczająca, dlatego opracowano ulepszoną wersję - WPA2.
- WEP. Historycznie pierwszy protokół szyfrowania używany w sieciach bezprzewodowych. Wykorzystuje szyfrowanie od 64-bitowego do 256-bitowego, ta druga opcja sama w sobie jest uważana za silną, ale własne luki w standardzie pozwalają specjalistom bez większych trudności włamać się do takiego kanału komunikacji. W efekcie WEP jest całkowicie przestarzały, jego obsługa zapewnia się głównie pod kątem kompatybilności z najprostszym sprzętem (zwłaszcza, że technicznie łatwe jest zapewnienie tego wsparcia).
- WPA2. Najpopularniejszy standard bezpieczeństwa we współczesnym sprzęcie Wi-Fi. W pewnym momencie stało się to ważną aktualizacją oryginalnego WPA: w szczególności algorytm AES CCMP został zaimplementowany w WPA2, który jest niezwykle trudny do złamania. Z czasem jednak w tym protokole zidentyfikowano pewne luki, co doprowadziło do opracowania bardziej zaawansowanego WPA3; jednak WPA3 dopiero zaczyna być masowo wdrażany, a w większości urządzeń Wi-Fi WPA2 pozostaje najbardziej zaawansowanym standardem.
Dwa niuanse należy odnotować osobno. Po pierwsze, WPA2 jest dostępny w dwóch wersjach - osobistej i korporacyjnej; w tym pr
...zypadku mówimy o wersji osobistej, korporacyjne są opisane w punkcie „802.1x”. Po drugie, gwarantowana obsługa tego standardu oznacza również kompatybilność z WEP i oryginalnym WPA.
- WPA3. Zasadnicze ulepszenie WPA2 wprowadzone w 2018 r. w celu usunięcia braków zidentyfikowanych w WPA2 w ciągu 14 lat od jego wprowadzenia. Ten standard wprowadził cztery kluczowe innowacje:
- Większe bezpieczeństwo sieci publicznych. W odróżnieniu od swojego poprzednika, WPA3 szyfruje ruch między gadżetem a routerem/punktem dostępu, nawet jeśli sieć jest publiczna i nie wymaga hasła.
- Zabezpieczenie przed podatnością KRACK, która umożliwiała włamanie się do kanału komunikacyjnego WPA2 w momencie nawiązywania połączenia. Za tę ochronę odpowiada algorytm SAE - jest on bardziej zaawansowany niż dotychczas stosowany PSK. W szczególności podczas nawiązywania połączenia przez SAE oba urządzenia są traktowane jako równe (w PSK odbiornik i nadajnik były wyraźnie zdefiniowane) – nie pozwala to na „wciśnięcie się” atakującego między urządzeniami za pomocą metod KRACK.
- Funkcja Easy Connect upraszcza połączenie z sieciami Wi-Fi dla urządzeń bez wyświetlaczy (w szczególności komponentów inteligentnego domu). Każde z tych urządzeń będzie miało na obudowie kod QR, a do połączenia z siecią wystarczy zeskanować ten kod smartfonem/tabletem już podłączonym do tej sieci. Co prawda, funkcja ta nie jest bezpośrednio związana z WPA3, do jej działania wystarcza WPA2; jednak masowe wdrażanie Easy Connect powinno być oczekiwane w tym samym czasie, co WPA3.
- Zaawansowane algorytmy szyfrowania wrażliwych danych, odpowiednie nawet dla agencji rządowych i przedsiębiorstw obronnych. Jednak funkcja ta dotyczy głównie korporacyjnej wersji WPA3 - a wsparcie dla tej wersji jest oznaczone jako „802.1x” (patrz poniżej, w tym przypadku mówimy głównie o osobistej wersji tego standardu).
W wielu urządzeniach uaktualnienie z WPA2 do WPA3 można wdrożyć programowo, instalując nową wersję oprogramowania układowego. Jeśli jednak obsługa tego protokołu jest dla Ciebie ważna, najlepiej wybrać sprzęt, w którym taka obsługa jest początkowo zapewniana. Należy również pamiętać, że obecność WPA3 jest prawie gwarantowana, co oznacza również kompatybilność z WPA2.
- 802.1x. W tym przypadku oznacza to obsługę dla korporacyjnych standardów bezpieczeństwa – najczęściej odpowiadających im wersji protokołów WPA2, w nowych urządzeniach również WPA3. Na przykład, jeśli specyfikacje zawierają oznaczenie „802.1x” oprócz „WPA3”, to ten model obsługuje zarówno osobiste, jak i korporacyjne wersje WPA3. Jeśli chodzi o różnice między tymi wersjami, jedną z nich jest obsługa oddzielnego serwera uwierzytelniającego w protokołach korporacyjnych. Innymi słowy, podczas korzystania z tej funkcji dane o kontach i prawach dostępu są przechowywane oddzielnie od sprzętu Wi-Fi, na specjalnym bezpiecznym serwerze i to ten serwer każdorazowo sprawdza dane podłączonego sprzętu i decyduje, czy zezwalać lub odmawiać dostępu.