Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie ASRock H110M-DGS R3.0 vs Asus H110M-K

Dodaj do porównania
ASRock H110M-DGS R3.0
Asus H110M-K
ASRock H110M-DGS R3.0Asus H110M-K
od 214 zł
Produkt jest niedostępny
Porównaj ceny 4
TOP sprzedawcy
Przeznaczeniedo domu / biurado domu / biura
SocketIntel LGA 1151Intel LGA 1151
Formatmicro-ATXmicro-ATX
Fazy zasilania5
Radiator VRM
Wymiary (WxS)191x188 mm226x183 mm
Chipset
ChipsetIntel H110Intel H110
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR42 banki(ów)2 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania2133 MHz2133 MHz
Maks. wielkość pamięci32 GB32 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)4 szt.4 szt.
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x1 szt.2 szt.
Liczba gniazd PCI-E 16x1 szt.1 szt.
Obsługa PCI Express3.03.0
Złącza na płycie głównej
USB 2.01 szt.
USB 3.2 gen11 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Zintegrowany układ audio
Układ audioRealtek ALC887Realtek ALC887
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtek RTL8111CRealtek RTL8111H
Złącza na tylnym panelu
USB 2.04 szt.4 szt.
USB 3.2 gen12 szt.2 szt.
PS/22 szt.2 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin4 pin
Liczba złączy wentylatorów CPU2 szt.2 szt.
Data dodania do E-Kataloglistopad 2016listopad 2015

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Radiator VRM

Obecność na płycie głównej osobnego radiatora do VRM.

VRM to moduł regulacji napięcia, który dostarcza energię z zasilacza komputera do procesora. Moduł ten obniża standardowe napięcie zasilacza (+5 lub +12 V) do niższej wartości niezbędnej do pracy procesora (zwykle nieco ponad 1 V). Przy dużych obciążeniach regulator napięcia może się bardzo nagrzać, a bez specjalistycznego układu chłodzenia może dojść do przegrzania, a nawet spalenia się części. Radiator VRM zmniejsza prawdopodobieństwo takich sytuacji; może być przydatny dla każdego procesora i jest wysoce pożądany, jeśli płyta ma być używana z wydajnym procesorem high-end (zwłaszcza podkręconym).

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Liczba gniazd PCI-E 1x

Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są płyty główne z 1 slotem PCI-E 1x, 2 slotami PCI-E 1x, 3 portami PCI-E 1x i jeszcze więcej.

Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.

Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).

Wyjście D-Sub (VGA)

Obecność na płycie głównej własnego wyjścia D-Sub (VGA).

Takie wyjście jest przeznaczone do transmisji wideo ze zintegrowanej karty graficznej (patrz wyżej) lub procesora ze zintegrowaną grafiką (podkreślamy, że niemożliwe jest przesłanie do niego sygnału z dedykowanej karty graficznej przez chipset płyty głównej). Jeśli chodzi o VGA, jest to standard analogowy pierwotnie stworzony dla monitorów CRT. Nie wyróżnia się jakością obrazu, prawie nie nadaje się do rozdzielczości wyższych niż 1280x1024 i nie zapewnia transmisji dźwięku, dlatego jest powszechnie uważany za przestarzały. Jednak ten rodzaj wejścia jest nadal używany w samodzielnych monitorach, telewizorach, projektorach itp.; tak więc wśród płyt głównych można znaleźć modele z takimi wyjściami.

Kontroler LAN

Model kontrolera LAN zainstalowanego na płycie głównej.

Kontroler LAN zapewnia wymianę danych między płytą a portem (portami) sieciowym komputera. W związku z tym zarówno ogólna charakterystyka, jak i indywidualne cechy funkcjonalności sieciowej płyty głównej zależą od cech tego modułu: obsługa specjalnych technologii, jakość połączenia w przypadku niestabilnej komunikacji itp. Znając model kontrolera LAN, możesz znaleźć szczegółowe dane na ten temat - w tym praktyczne recenzje; informacje te rzadko są potrzebne zwykłemu użytkownikowi, jednak mogą być przydatne dla entuzjastów gier online, a także do niektórych konkretnych zadań.

W związku z tym model kontrolera LAN jest sprawdzany głównie w tych przypadkach, gdy jest to dość zaawansowane rozwiązanie, zauważalnie przewyższające standardowe modele. Takie rozwiązania w dzisiejszych czasach produkowane są głównie pod markami Intel(średni poziom), Realtek(stosunkowo proste modele), Aquntia i Killer(w większości zaawansowane rozwiązania).

Zasilanie procesora

Rodzaj gniazda do zasilania procesora znajdujący się na płycie głównej.

Większość nowoczesnych płyt głównych wykorzystuje 4-pinowe złącze , i znaczna część zasilaczy w obudowach ATX jest do tego przystosowana. Ponadto istnieją inne typy złączy zasilających, wszystkie mają parzystą liczbę pinów - 2, 6 lub 8. Dwupinowe zasilanie zasadniczo jest wykorzystywane w płytach głównych o miniaturowych kształtach, takich jak cienkie mini-ITX, przeznaczone do procesorów o niskim poborze mocy. 8-pinowe złącza, odwrotnie, są przeznaczone do zasilania bardzo potężnych nowoczesnych procesorów. Uważa się, że takie złącze zapewnia bardziej stabilne zasilanie i dokładniejszą regulację jego parametrów. Złącza 6 pin nie występują osobno, zwykle uzupełniają one złącza 8-pinowe w wysokowydajnych płytach głównych, w szczególności w tych gamingowych.

Należy też zwrócić uwagę, iż niektóre płyty mają 2 lub nawet 3 gniazda zasilania — najczęściej spotykany schemat 8+4, 8+8 i 8+8+6 pin. Ta funkcjonalność jest przeznaczona dla zaawansowanych procesorów o dużej mocy i sporym zużyciu energii, dla których jedno złącze już nie wystarcza. Można też spotkać inną charakterystyczną kategorię płyt głównych bez osobnego zasilacza procesora: są to modele wyp...osażone w zintegrowany procesor, który pobiera energię z własnych obwodów płyty głównej bez specjalnego złącza zasilania.
Dynamika cen
ASRock H110M-DGS R3.0 często porównują
Asus H110M-K często porównują