Wymiary modelu (WxSxG)
Maksymalne wymiary wyrobu, który można wydrukować na drukarce 3D za jednym razem.
Im większe wymiary modelu — tym szerszy wybór u użytkownika, tym większa różnorodność rozmiarów dostępnych do druku. Z drugiej strony „duże” drukarki zajmują sporo miejsca, a parametr ten znacząco wpływa na koszt urządzenia. Ponadto przy druku FDM/FFF (patrz "Technologia druku") w przypadku dużego modelu pożądane są większe dysze i wyższe szybkości druku — te cechy negatywnie wpływają na szczegóły i obniżają jakość druku małych elementów. Dlatego przy wyborze nie należy gonić za maksymalnymi rozmiarami — należy obiektywnie ocenić wymiary obiektów, które mają zostać utworzone na drukarce, i opierać się na tych danych (plus niewielki zapas na wypadek sytuacji awaryjnej). Ponadto zwracamy uwagę, że duży wyrób można wydrukować w częściach, a następnie te części można połączyć.
Objętość modelu
Największy nakład modelu jaki można wydrukować na drukarce. Wskaźnik ten zależy bezpośrednio od maksymalnych wymiarów (patrz wyżej) - z reguły odpowiada tym wymiarom pomnożonym przez siebie. Na przykład wymiary 230x240x270 mm będą odpowiadać objętości 23 * 24 * 27 = 14 904 cm3, czyli 14,9 litra.
Dokładne znaczenie tego wskaźnika zależy od zastosowanej technologii drukowania (patrz wyżej). Dane te mają fundamentalne znaczenie dla technologii fotopolimerowych SLA i DLP, a także dla proszkowego SHS: objętość modelu odpowiada ilości fotopolimeru/proszku, którą należy załadować do drukarki, aby wydrukować produkt na maksymalnej wysokości. Przy mniejszym rozmiarze ilość ta może się proporcjonalnie zmniejszyć (na przykład wydrukowanie modelu na połowie wysokości maksymalnej będzie wymagało połowy objętości), ale niektóre drukarki wymagają pełnego załadowania niezależnie od wielkości produktu. Z kolei dla FDM/FFF i innych podobnych technologii objętość modelu jest raczej wartością referencyjną: w nich rzeczywiste zużycie materiału będzie zależeć od konfiguracji drukowanego produktu.
Jeśli chodzi o konkretne liczby, objętość
do 5 litrów włącznie można uznać za małą,
od 5 do 10 litrów - średnią,
ponad 10 litrów - dużą.
Min. grubość warstwy
Najmniejsza grubość pojedynczej warstwy materiału, którą można nanieść drukarką.
W urządzeniach fotopolimerowych formatu SLA i DLP (patrz „Technologia druku”) znaczenie tego parametru jest proste: jest to najmniejsza wysokość ruchu platformy roboczej w jednym cyklu. Im niższa jest ta wysokość, tym lepsze szczegóły można uzyskać na urządzeniu; jednak w takich modelach wysokość ta jest w zasadzie niewielka - najczęściej
nie więcej niż 50 mikronów. Ale w urządzeniach opartych na FDM/FFF i podobnych technologiach wykorzystujących dysze są też wyższe wskaźniki -
51 - 100 mikronów i nawet
więcej. Tutaj należy założyć, że niewielka minimalna grubość warstwy pozwala na efektywne wykorzystanie małych dysz i uzyskanie lepszej szczegółowości. Z drugiej strony zwiększenie szczegółowości zmniejsza wydajność, a aby zrekompensować to zjawisko, konieczne jest zwiększenie prędkości drukowania poprzez zwiększenie mocy (zarówno ogrzewania, jak i przepływu powietrza), co z kolei wpływa na koszty. Dlatego przy wyborze należy kierować się realnymi potrzebami: w przypadku przedmiotów o stosunkowo małej szczegółowości nie ma potrzeby szukania drukarki o małej grubości warstwy.
Oddzielnie należy zauważyć, że w drukarkach FDM / FFF optymalna grubość warstwy zależy od średnicy dyszy (patrz poniżej) i specyfiki drukowania - np. dla obwodu „w jednej linii” bez wypełnienia można zastos
...ować minimalną grubość warstwy , natomiast do napełniania nie jest zalecane. Szczegółowe zalecenia dotyczące optymalnej grubości warstwy dla różnych sytuacji można znaleźć w dedykowanych przewodnikach.Temperatura stołu
Maksymalna temperatura nagrzewania w drukarkach 3D z podgrzewanym stołem (szczegóły w odpowiednim punkcie). Im wyższy próg, tym więcej rodzajów tworzywa sztucznego można używać do druku. Tak więc modele z nagrzewaniem powierzchni do 100 °C nadają się do druku 3D z tworzywa PLA, przy temperaturze stołu od 100 do 120 °C — do pracy z tworzywem ABS i nylonem, modele wysokotemperaturowe — pozwalają na zastosowanie poliwęglanu i odmian tworzyw ogniotrwałych.
Transmisja danych
Metody przesyłania danych przewidziane w konstrukcji drukarki 3D. Mowa tu przede wszystkim o danych związanych z drukowanym modelem (zgodnie z którym drukarka bezpośrednio drukuje), w niektórych przypadkach także o konfiguracji urządzenia i innych sposobach interakcji z nim; szczegółowe informacje można znaleźć w poszczególnych pozycjach listy.
Jeśli chodzi o konkretne opcje, oprócz tradycyjnego
połączenia z PC przez USB, nowoczesne drukarki mogą zapewnić takie metody przesyłania danych jak
czytnik kart, prywatny
port USB, połączenie sieciowe przez
LAN, a także połączenie bezprzewodowe przez
Wi -Fi. Oto możliwości każdej z tych opcji:
- Czytnik kart. Natywne gniazdo kart pamięci w drukarce. Najczęściej przeznaczony do pracy z popularnymi kartami SD; jednak nawet takie nośniki mają kilka odmian, więc nie zaszkodzi sprawdzić osobno zakres obsługiwanych kart. W każdym razie głównym celem tej funkcji jest drukowanie bezpośrednie: wkładając do drukarki kartę z nagranym plikiem projektu można wykonać model nawet bez podłączania urządzenia do komputera. Można również przewidzieć inne sposoby wykorzystania czytnika kart - na przykład kopiowanie materiałów ze skanera modelowego na nośnik zewnętrzny (patrz "Funkcje i możliwości"). Zwróć uwagę, że funkcja ta jest wygodna głównie do wymiany danych z l
...aptopem - w prawie każdym nowoczesnym laptopie znajduje się gniazdo na karty pamięci.
- USB. Natywne złącze USB na korpusie drukarki. Wykorzystywany jest podobnie do opisanego powyżej czytnika kart - do pracy z nośnikami zewnętrznymi, w tym przypadku „pendrive” i innymi podobnymi urządzeniami. Sposoby korzystania z portu USB są również podobne - głównie drukowanie bezpośrednie, ale możliwe są również inne opcje (kopiowanie danych ze skanera, aktualizacja oprogramowania układowego itp.).
- Wi-Fi. Moduł bezprzewodowy, który można wykorzystać zarówno do podłączenia drukarki do sieci lokalnych, jak i do bezpośredniej komunikacji z tabletami, laptopami i innymi gadżetami. Konkretne możliwości należy wyjaśnić osobno, ale tutaj zauważamy, że połączenie sieciowe pozwala używać drukarki jako wspólnego urządzenia dla wszystkich komputerów w sieci lokalnej, a nawet uzyskiwać do niej dostęp z Internetu (chociaż ten ostatni może wymagać określonej konfiguracji). Jednocześnie Wi-Fi jest wygodniejszą alternatywą dla przewodowej sieci LAN (patrz poniżej), ponieważ eliminuje potrzebę okablowania. Jeśli chodzi o bezpośrednie połączenie z innym gadżetem, ta opcja jest mniej powszechna. Zwykle zapewnia możliwość wysyłania projektów do druku i dostęp do podstawowych ustawień; a korzystanie z tej kontrolki może wymagać zainstalowania specjalnej aplikacji.
- Połączenie z komputerem (USB). Podłączenie do portu USB komputera PC lub laptopa to najpopularniejszy sposób bezpośredniego podłączenia drukarki 3D do takich urządzeń. Zdecydowana większość nowoczesnych komputerów wyposażona jest w porty tego typu i nawet przestarzałe wtyczki USB 2.0 wystarczą do współpracy z drukarką, nie mówiąc już o nowszych standardach. Samo połączenie może służyć zarówno do wysyłania zadań drukowania, jak i do kontrolowania parametrów pracy – ponadto to właśnie za pośrednictwem komputera PC/laptopa zazwyczaj realizowane są szczegółowe ustawienia, które nie są dostępne na ekranie samej drukarki. Ponadto w razie potrzeby za pośrednictwem komputera można otworzyć ogólny dostęp do urządzenia za pośrednictwem sieci lokalnej lub Internetu - nawet jeśli sama drukarka nie posiada złącza LAN lub modułu Wi-Fi. Jest to znacznie bardziej skomplikowane w organizacji i nie tak wygodne niż korzystanie z modelu sieciowego z bezpośrednim połączeniem do sieci LAN, ale eliminuje konieczność przepłacania za dodatkowe opcje łączności w samej drukarce.
- Połączenie z komputerem (LAN). Połączenie z urządzeniami zewnętrznymi przez LAN - standardowe złącze do przewodowego połączenia z sieciami komputerowymi. Właściwie takie połączenie jest przeznaczone głównie do korzystania z drukarki jako urządzenia sieciowego - gdy dostęp do drukowania i ustawień można uzyskać z różnych komputerów w sieci lokalnej, a nawet przez Internet. LAN jest mniej wygodny do podłączenia niż Wi-Fi, ponieważ wymaga kabla, jednak takie połączenie jest bardziej niezawodne i nie cierpi na obecność dużej liczby urządzeń bezprzewodowych w pobliżu. Dodatkowo kabel może się przydać, jeśli router Wi-Fi lub punkt dostępu „nie dociera” do lokalizacji drukarki.
Zauważ, że standardowa aplikacja LAN zakłada połączenie z routerem sieciowym, ale możliwe jest również bezpośrednie połączenie z komputerem. Druga opcja pozwala na użycie tego złącza podobnie jak opisanego powyżej USB - czyli tylko dla jednego komputera; ale jeśli ten komputer jest podłączony do sieci lokalnej i / lub Internetu, możesz również skonfigurować dostęp sieciowy do drukarki.Sterownik silnika krokowego
Sterowniki to małe chipy sterujące napędami drukarek 3D. Zasadniczo kontrolują przepływ prądu do silnika krokowego. Sterowniki firmy Trinamic Motion Control są szeroko stosowane. Dlatego TMC2208 i TMC2209, a także ich ulepszona modyfikacja TMC2225, słusznie są uważane za bardzo ciche opcje. Sterowniki te obsługują podział kroków do 1:256 i mogą działać niezależnie przy ręcznych zmianach lub w trybie UART, w którym prąd silnika jest regulowany za pomocą oprogramowania sprzętowego.
Moc
Znamionowy pobór mocy drukarki to w rzeczywistości najwyższa moc zużywana przez urządzenie podczas normalnej pracy.
Wskaźnik ten jest bezpośrednio związany z charakterystyką urządzenia, przede wszystkim z ogólną wydajnością. Generalnie jednak drukarki 3D są techniką stosunkowo ekonomiczną: wśród rozwiązań niezwiązanych ze specjalistycznym sprzętem przemysłowym wartości powyżej 1 kW są niezwykle rzadkie, a nawet w najbardziej produktywnych modelach wskaźnik ten nie przekracza 3 kW. Przy takich pojemnościach wystarczy zwykłe domowe gniazdko, więc trzeba zwracać uwagę na pobór prądu głównie w konkretnych przypadkach - na przykład przy ocenie obciążenia na stabilizatorze napięcia lub źródle zasilania rezerwowego.