Polska
Katalog   /   Komputery   /   Monitory

Porównanie AOC G2460VQ6 24 " vs AOC G2460PF 24 "

Dodaj do porównania
AOC G2460VQ6 24 "
AOC G2460PF 24 "
AOC G2460VQ6 24 "AOC G2460PF 24 "
od 564 zł
Produkt jest niedostępny
od 1 475 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajmonitormonitor gamingowy
Przekątna24 "24 "
Wyświetlacz
Rodzaj matrycyTN+filmTN+film
Powłoka ekranumatowamatowa
Rozdzielczość1920x1080 (16:9)1920x1080 (16:9)
Rozmiar piksela0.28 mm0.28 mm
Czas reakcji (GtG)1 ms1 ms
Częstotliwość odświeżania60 Hz144 Hz
Częstotliwość odświeżania (pion.)48 – 76 Hz50 – 146 Hz
Częstotliwość odświeżania (pozioma)30 – 83 kHz30 – 160 kHz
Kąt widzenia w pionie160 °160 °
Kąt widzenia w poziomie170 °170 °
Jasność250 cd/m²350 cd/m²
Kontrast statyczny1 000:11 000:1
Kontrast dynamiczny80 000 000:180 000 000:1
Głębia koloru8 bit6 bit + FRC
Złącza
Transmisja wideo
VGA
 
DisplayPort
HDMI 1 szt.
VGA
DVI-D
DisplayPort
HDMI 1 szt.
Złącza (opcjonalnie)
wyjście mini Jack (3.5 mm)
 
Funkcje i możliwości
Funkcje i możliwości
Flicker-Free
AMD FreeSync
Flicker-Free
AMD FreeSync Premium
Tryb portretowy
Obrót ekranu
Regulacja wysokości
Wbudowane głośniki
Moc dźwięku
4 W /2x2 W/
2 W
hub USB 2.0
 /4 rzeczy./
Dane ogólne
Uchwyt ściennyVESA100x100 mmVESA100x100 mm
Pobór mocy
23 W /0,5 W. w trybie czuwania/
23 W /0,5 W. w trybie czuwania/
Wymiary (SxWxG)565.4.4x411.6.4x219.3 mm565.4x393.6x244.58 mm
Waga4.27 kg6.54 kg
Kolor obudowy
Data dodania do E-Katalogkwiecień 2016marzec 2016

Rodzaj

— Monitor. W tym przypadku mają się na myśli monitory przeznaczone głównie do klasycznego zastosowania - jako ekran do komputera osobistego. Ich funkcjonalność może być dość zróżnicowana - od ekranów dla początkujących z 1-2 wejściami do podłączenia, po modele wielofunkcyjne z wbudowanymi głośnikami, tunerami TV, pilotami itp. To samo dotyczy przekątnej. Większość tradycyjnych monitorów należy do przedziału 22-30” (te rozmiary są dziś uważane za optymalne dla ekranów, których odległość określa szerokość pulpitu), jednak są też urządzenia wielkoformatowe, których przekątna może przekraczać 32”.

Przenośny monitor. Oddzielna kasta monitorów przeznaczonych do podłączenia do laptopów. Wyróżniają się niewielką przekątną, nieprzekraczającą 18 cali, cienkim formatem i brakiem podstawy, dzięki czemu wyglądają jak tablety.

Monitor gamingowy. Monitory uważane za optymalne do gier. Niekoniecznie są to urządzenia specjalnie zaprojektowane do takiego stosowania (chociaż są też takie); jednak wszystkie monitory gamingowe mają szereg funkcji, które z pewnością docenią gracze. Po pierwsze, rozdzielczość (patrz poniżej) w takich modelach nie jest niższa niż Full HD. Po drugie, matryce charakteryzują się niskim czasem reakcji - nie większym niż 5 ms, co pozwala na wysokiej jakości wyświetlanie dynamicznych scen; a częstotliwość odświeżania często sięga 120 Hz lub nawet więcej (chociaż są dość skromne...wartości). Po trzecie, urządzenia tego typu często mają specjalne funkcje do gier (patrz poniżej) i podobne funkcje - w szczególności większość monitorów gamingowych jest kompatybilna z technologiami FreeSync i/lub G-Sync (patrz „Funkcje i możliwości”).

Panel LCD. Jedną z kluczowych cech odróżniających panele LCD od konwencjonalnych monitorów jest szeroka gama złączy: oprócz wyjść wideo zawiera dodatkowe porty, takie jak LAN lub RS-232 (patrz „Złącza (opcjonalne)”). Uważa się również, że panel LCD należy zawiesić na ścianie, ale ma to swoją specyfikę. Wiele urządzeń tego typu jest tak naprawdę przeznaczonych tylko do montażu na ścianie, a niektóre modele można łączyć w ścianę wideo, emitując jeden obraz na kilka ekranów. Ale poza tym istnieją rozwiązania wyposażone w podstawy, które mogą być używane na biurku (a czasem - ogólnie oryginalnie do niego zaprojektowane). Jednocześnie pierwsza wersja, „czysto naścienna”, może mieć niemal dowolną przekątną - w tym skromną 21-22", podczas gdy wymiary paneli „desktopowych" zaczynają się od 32", ponadto często mają one zaawansowane matryce jak IPS. W każdym razie takie ekrany są używane głównie w raczej określonych obszarach. Na przykład instalacja naścienna jest wygodna do organizowania tablic informacyjnych na dworcach, lotniskach, w centrach handlowych, do wykorzystania na stoiskach wystawienniczych, w salach konferencyjnych itp. Modele typu desktop są przydatne dla tych, dla których kluczowa jest duża wielkość i wysoka jakość obrazu. Wśród nich jest również wiele urządzeń z ekranami dotykowymi, co dodatkowo poszerza doznania użytkownika.

— Panel plazmowy. Urządzenia tego typu są bardzo podobne do opisanych powyżej paneli LCD, ale mają też pewne kluczowe różnice. Główną jest technologia zastosowana w ekranie: zamiast matrycy ciekłokrystalicznej panele plazmowe wykorzystują komórki wypełnione specjalnym gazem i pokryte świecącą substancją - luminoforem. Technologia ta zapewnia bardzo wysoką jakość obrazu z głębokim odwzorowaniem barw i kontrastem. Jednocześnie nie jest łatwo stworzyć małą komórkę plazmową, dlatego piksele na tego typu ekranach mają bardziej rygorystyczne ograniczenia minimalnego rozmiaru. W efekcie panele plazmowe w zasadzie nie są małe - 42" jak na taki ekran uważany jest za niemal minimalny rozmiar. Dodatkowo minusem opisywanych zalet jest też nieco krótsza żywotność i wyższy koszt niż w matryc LCD. W efekcie "plazma„ nie doczekała się zbyt dużego rozpowszechnienia, takie urządzenia kupowane są głównie nie do użytku „publicznego”, ale do osobistego - np. jako ekran kina domowego czy sprzęt dla zaawansowanego gracza.

Ściana wizyjna. Modele przeznaczone do tworzenia ścian wizyjnych. Taka ściana składa się z dużej liczby blisko rozmieszczonych ekranów, które mogą współpracować i generować duży ogólny obraz; każdy ekran odpowiada za swój własny fragment obrazu. Takie konstrukcje używany są w szczególności na koncertach i innych imprezach publicznych, gdzie pojedyncze ekrany przestają wystarczać. Główną cechą monitorów do ścian wizyjnych jest bardzo wąska ramka - dzięki temu granice między stykami są prawie niewidoczne, a obraz odbierany jest jako jednolity.

Wyświetlacz informacyjny. Urządzenia o wąskim przeznaczeniu, zakładające stacjonarny sposób montażu. Takie wyświetlacze montowane są na ścianach, wbudowywane w specjalne nisze lub otwory. Są wykorzystywane jako szyldy reklamowe, potrafią transmitować materiały reklamowe oraz odtwarzać rozmaite treści wideo. Poszczególne modele wyświetlaczy informacyjnych mogą obsługiwać sterowanie dotykowe, posiadać preinstalowany system operacyjny Smart i inne „inteligentne” funkcje. Z reguły do ​​sterowania pracą takich urządzeń wykorzystywane jest specjalistyczne, autorskie oprogramowanie.

Częstotliwość odświeżania

Maksymalna częstotliwość odświeżania obsługiwana przez monitor przy zalecanej (maksymalnej) rozdzielczości.

Im wyższa liczba klatek na sekundę, tym płynniejszy ruch będzie się pojawiał na ekranie, tym mniej zauważalne będzie szarpanie i rozmycie. Oczywiście rzeczywista jakość obrazu zależy również bezpośrednio od sygnału wideo, ale do normalnego oglądania wideo o dużej częstotliwości odświeżania monitor musi ją również obsługiwać.

Dokonując wyboru według tego parametru należy mieć na uwadze, że przy rozdzielczościach niższych niż maksymalna obsługiwana częstotliwość odświeżania może być wyższa. Na przykład model z matrycą 1920x1080 i deklarowaną częstotliwością odświeżania 60 Hz przy zmniejszonej rozdzielczości może dać 75 Hz; ale częstotliwość odświeżania 75 Hz jest wskazywana w specyfikacjach tylko wtedy, gdy jest obsługiwana przez monitor o własnej (maksymalnej) rozdzielczości.

Zwróć również uwagę, że wysoka częstotliwość odświeżania jest szczególnie ważna w przypadku modeli do gier (patrz „Typ”). W większości z nich wskaźnik ten wynosi 120 Hz i więcej; wielu uważa monitory o częstotliwości 144 Hz za najlepszą opcję pod względem stosunku ceny do jakości, ale są też wyższe wartości - 165 Hz i 240 Hz. A monitory o częstotliwości 100 Hz...mogą być zarówno niedrogimi modelami do gier, jak i zaawansowanymi modelami domowymi.

Można oszacować wszystkie częstotliwości odświeżania, z którymi ten monitor może pracować, na podstawie częstotliwości skanowania pionowego zadeklarowanej w specyfikacjach (patrz poniżej).

Częstotliwość odświeżania (pion.)

Częstotliwość skanowania pionowego - lub też częstotliwość odświeżania - obsługiwana przez monitor.

Termin „częstotliwość odświeżania” był pierwotnie używany w specyfikacjach monitorów CRT pracujących z sygnałem analogowym. Tradycyjnie nadal jest używany w stosunku do matryc LCD, ale w przypadku takich ekranów częstotliwość odświeżania jest w rzeczywistości liczbą klatek na sekundę. Szczegóły dotyczące liczby klatek na sekundę podano powyżej; tutaj zauważamy, że w tym przypadku wskazywana jest nie maksymalna częstotliwość, ale zakres częstotliwości obsługiwanych przez monitor - od minimum do maksimum. Pozwala to ocenić zgodność z niektórymi kartami graficznymi i trybami pracy: liczba klatek na sekundę sygnału wideo musi odpowiadać prędkości klatek monitora (lub przynajmniej być jej wielokrotnością), w przeciwnym razie możliwe są drgania i inne nieprzyjemne zjawiska.

Warto zauważyć, że monitor zwykle obsługuje nie wszystkie częstotliwości z podanego w specyfikacji zakresu, a tylko niektóre standardowe wartości - na przykład 50 Hz, 60 Hz i 75 Hz dla modelu 50 - 75 Hz.

Częstotliwość odświeżania (pozioma)

Częstotliwość odświeżania poziomego obrazu na ekranie monitora.

Parametr ten był istotny dla monitorów CRT, w których obraz był tworzony przez wiązkę elektronów, która „biegła” każdą oddzielną linią na ekranie i podświetlała piksele. Częstotliwość odświeżania poziomego określa liczbę linii rysowanych na sekundę. Jednak współczesne matryce LCD nie wykorzystują skanu, a pełnoklatkowy obraz. Dlatego dzisiaj parametr ten jest rzadko podawany w monitorach i opisuje maksymalną częstotliwość odświeżania poziomego w analogowym sygnale wideo (na przykład przez interfejs VGA), z którą ekran może normalnie pracować.

Jasność

Maksymalna jasność zapewniana przez ekran monitora.

Monitor o dużej jasności warto wybierać przede wszystkim wtedy, gdy urządzenie ma być używane w jasnym otoczeniu - na przykład gdy światło słoneczne wpada do miejsca pracy. Takie oświetlenie może „zagłuszyć” przyciemniony obraz, przez co praca jest niewygodna. W innych warunkach wysoka jasność ekranu bardzo męczy oczy.

Większość współczesnych monitorów jest w stanie zapewnić około 200 - 400 cd/m2 - to zwykle wystarcza nawet w słońcu. Jednak są też wyższe wartości: na przykład w panelach LCD (patrz „Rodzaj”) jasność może osiągać kilka tysięcy cd/m2. Jest to konieczne biorąc pod uwagę specyfikę takich urządzeń - obraz musi być wyraźnie rozpoznawalny z dużej odległości.

Głębia koloru

Głębia koloru obsługiwana przez monitor.

Parametr ten charakteryzuje liczbę odcieni, które może wyświetlić ekran. I tu warto przypomnieć, że obraz we współczesnych monitorach budowany jest w oparciu o 3 podstawowe kolory - czerwony, zielony, niebieski (schemat RGB). Liczba bitów jest wskazana nie dla całego ekranu, ale dla każdego koloru podstawowego. Na przykład 6 bitów (minimalna głębia kolorów dla współczesnych monitorów) oznacza, że ekran jest w stanie wyprodukować 2^6, czyli 64 odcienie czerwieni, zieleni i koloru niebieskiego; całkowita liczba odcieni wyniesie 64*64*64 = 262 144 (0,26 mln). 8-bitowa głębia kolorów (256 odcieni dla każdego koloru podstawowego) daje już łącznie 16,7 mln kolorów; a dzisiejsze najbardziej zaawansowane monitory obsługują 10-bitowe kolory, umożliwiając pracę z ponad miliardem odcieni.

Osobna wzmianka dotyczy ekranów z obsługą technologii FRC; obecnie można znaleźć modele oznaczone „6 bit + FRC” i „8 bit + FRC”. Technologia ta została opracowana w celu poprawy jakości obrazu w sytuacjach, gdy przychodzący sygnał wideo ma większą głębię kolorów niż ekran - na przykład gdy 10-bitowe wideo jest podawane na 8-bitową matrycę. Jeśli taki ekran obsługuje FRC, obraz na nim będzie zauważalnie lepszy niż na zwykłym 8-bitowym monitorze (choć nieco gorszy niż na pełnoprawnym 10-bitowym, ale ekrany „8...-bit + FRC” są dużo tańsze).

Wysoka głębia kolorów jest ważna przede wszystkim w przypadku profesjonalnej pracy z grafiką i innych zadań wymagających dużej dokładności odwzorowania barw. Z drugiej strony, takie cechy znacząco wpływają na koszt monitora. Ponadto warto pamiętać, że jakość odwzorowania barw zależy nie tylko od głębi kolorów, ale także od innych parametrów - w szczególności od przestrzeni barw (patrz poniżej).

Transmisja wideo

VGA. Złącze przeznaczone do przesyłania analogowych sygnałów wideo już w czasach monitorów CRT (specjalnie do nich). Dziś jest uważane za przestarzałe i stopniowo wycofuje się z użytkowania - w szczególności ze względu na małą przepustowość, która nie pozwala w pełni współpracować z treściami HD, a także podwójną konwersję sygnału przy zastosowaniu VGA w monitorach LCD (co może stać się potencjalnym źródłem zakłóceń).

DVI. Złącze do przesyłania sygnału wideo zaprojektowane specjalnie dla urządzeń LCD, w tym monitorów. Chociaż skrót DVI pierwotnie oznacza „cyfrowy interfejs wideo”, interfejs ten umożliwia również analogową transmisję danych. W rzeczywistości istnieją trzy główne typy DVI: analogowe, kombinowane i cyfrowe. Pierwsza odmiana w nowoczesnym sprzęcie komputerowym jest prawie nieużywana (funkcję tę pełni tak naprawdę złącze VGA), a złącze czysto cyfrowe - DVI-D - jest wskazane osobno w naszym katalogu (patrz poniżej). Dlatego jeśli specyfikacja monitora wskazuje „po prostu DVI” - najprawdopodobniej chodzi o kombinowane złącze DVI-I. Pod względem specyfikacji analogowego sygnału wideo jest ono zbliżone do opisanego powyżej VGA (a nawet kompatybilne z nim poprzez najprostszy adapter), pod względem możliwości cyfrowych - do DVI-D (jednokanałowego, a nie Dual Link). Jednak ze względu na rozprzestrzenianie się czysto cyfrowych standardów, DVI-I jest coraz rzadz...iej spotykane.

DVI-D. Odmiana interfejsu DVI opisanego powyżej, obsługująca wyłącznie cyfrowy format sygnału wideo. Standardowy (Single Link) interfejs DVI-D umożliwia transmisję wideo w rozdzielczościach do 1920x1080 przy częstotliwości odświeżania 75 Hz lub 1920x1200 przy częstotliwości odświeżania 60 Hz, co już wystarcza do pracy ze współczesnymi rozdzielczościami aż do Full HD. Dodatkowo istnieje dwukanałowa (Dual Link) wersja tego złącza, która ma zwiększoną przepustowość i pozwala na pracę z rozdzielczościami do 2560x1600 (przy 60 Hz; lub 2048x1536 przy 75 Hz). Odpowiednio konkretny rodzaj DVI-D zależy od rozdzielczości monitora. W takim przypadku jednokanałowy ekran można podłączyć do dwukanałowej karty graficznej, ale nie odwrotnie. Zauważamy również, że sytuacja jest podobna w przypadku złączy: porty Single Link i Dual Link różnią się nieco konstrukcją, a jednokanałowy kabel jest kompatybilny z dwukanałowym wejściem/wyjściem, ale znowu nie odwrotnie.

DisplayPort. Interfejs pierwotnie stworzony do transmisji wideo (jednak można go wykorzystać także do przesyłania sygnałów audio – w tym DisplayPort działa podobnie jak HDMI). Występuje w wielu modelach monitorów. Należy pamiętać, że monitory z wejściami DisplayPort są również kompatybilne z wyjściami Thunderbolt (za pośrednictwem adaptera).

Konkretne możliwości tego złącza zależą od jego wersji. We współczesnych monitorach spotyka się następujące wersje:
  • v.1.2. Najwcześniejsza z rozpowszechnionych w naszych czasach wersji, wydana w 2010 roku. To właśnie w niej po raz pierwszy wprowadzono takie funkcje, jak obsługa 3D i możliwość łączenia szeregowego wielu ekranów. Wersja 1.2 umożliwia przesyłanie wideo 5K z prędkością 30 klatek na sekundę, możliwa jest również praca z wyższymi rozdzielczościami (do 8K), ale z pewnymi ograniczeniami.
  • v.1.3. Wersja DisplayPort wydana w 2014 roku. Ma półtora razy większą przepustowość niż v.1.2 i pozwala na transmisję wideo 8K przy 30 kl./s, 5K - przy 60 kl./s i 4K - przy 120 kl./s. Dodatkowo ta wersja posiada funkcję Dual-mode, która umożliwia podłączenie do wyjść HDMI i DVI za pomocą najprostszych adapterów pasywnych.
  • v.1.4. W tej wersji maksymalna liczba klatek na sekundę przy pracy z jednym ekranem wzrosła do 120 kl/s dla standardu 8K i do 240 kl/s dla standardów 4K i 5K (dane mają być przesyłane z kompresją z wykorzystaniem technologii DSC – Display Stream Compression). Inne funkcje obejmują kompatybilność z HDR10 i możliwość jednoczesnego przesyłania do 32 kanałów audio.
  • v.2.1. Wersja 2022 roku wykorzystująca tę samą specyfikację warstwy fizycznej co USB4. Przepustowość interfejsu została podwojona w porównaniu z wersją 1.4 (do 80 Gbit/s, z czego 77,37 Gbit/s jest dostępne do przesyłania danych). Przy tym realizowano obsługę podłączenia wyświetlaczy o rozdzielczościach do 16K przy 60 kl./s, 8K przy 120 kl./s, 4K przy 240 Hz i 2K przy 480 Hz (bez dodatkowego wykorzystania technologii DSC – Display Stream Compression). Kable DP40 (40 Gb/s) mogą być dłuższe niż dwa metry, a kable DP80 (80 Gb/s) mogą mieć długość ponad jednego metra.


— Mini DisplayPort. Zmniejszona wersja złącza DisplayPort opisanego powyżej, używana głównie w laptopach; szczególnie popularna w laptopach Apple. Ostatnio pojawił się trend zastępowania Mini Display Port uniwersalnym interfejsem Thunderbolt; jednak ten interfejs działa przez to samo złącze i zapewnia te same możliwości. Innymi słowy, monitory można podłączyć do Thunderbolt (wersji 1 i 2) za pomocą standardowego kabla miniDisplayPort, bez użycia adapterów (w przypadku v3 adapter jest nadal potrzebny).

— HDMI. Interfejs HDMI został pierwotnie zaprojektowany do przesyłania wideo o wysokiej rozdzielczości i wielokanałowego dźwięku w postaci cyfrowej za pomocą jednego kabla. Jest to obecnie najpopularniejszy z interfejsów podobnego przeznaczenia; wyjścia HDMI są praktycznie obowiązkowe zarówno w komputerowych kartach graficznych, jak i w centrach multimedialnych, odtwarzaczach DVD/Blu-ray i innych podobnych urządzeniach.

Obecność w monitorze kilku wyjść danego typu pozwala na podłączenie go do kilku źródeł sygnału jednocześnie — na przykład do komputera i tunera telewizji satelitarnej. W ten sposób możesz przełączać się między źródłami za pomocą ustawień nie tracąc czasu na bawienie się z kablami, a także użyć funkcji PBP.

Przy tym sam port ma różne wersje, a najbardziej popularne obecnie wersję to:
  • — v.1.4. Najwcześniejsza z aktywnie używanych obecnie wersja; pojawiła się w 2009 roku. Obsługuje rozdzielczości do 4096x2160 przy 24 kl./s, a w standardzie Full HD (1920x1080) liczba klatek na sekundę może osiągać 120 kl./s; możliwa jest także transmisja wideo 3D.
  • v.2.0. Wersja wprowadzona w 2013 roku jako olbrzymia aktualizacja standardu HDMI. Obsługuje wideo 4K z szybkością do 60 kl./s (stąd nazwa HDMI UHD), a także do 32 kanałów audio i do 4 strumieni audio jednocześnie. Ta wersja obsługuje także ultrawide 21:9.
  • v.2.1. Dość znacząca aktualizacja w stosunku do wersji 2.0, wprowadzona pod koniec 2017 roku. Dalsze zwiększenie przepustowości umożliwiło obsługę rozdzielczości do 8K przy 120 kl./s włącznie. Wprowadzono także ulepszenia dotyczące pracy z HDR. Należy zaznaczyć, że do korzystania ze wszystkich funkcji HDMI v 2.1 potrzebne są kable HDMI Ultra High Speed, chociaż podstawowe funkcje są też dostępne w przypadku zwykłych kabli.


— Wsparcie dla Adaptive Sync. Obsługa przez ekran technologii VESA Adaptive-Sync.

Funkcja ta ma na celu synchronizację częstotliwości odświeżania wyświetlacza z szybkością klatek GPU w celu zmniejszenia opóźnień, zminimalizowania artefaktów i wyeliminowania efektu rozchodzenia się obrazu. Ekrany z certyfikatem Adaptive-Sync powinny domyślnie działać z częstotliwością odświeżania 120 Hz lub wyższą, a częstotliwość klatek powinna być w stanie spaść do 60 Hz. Rzeczywisty czas odpowiedzi takich wyświetlaczy powinien być krótszy niż 5 ms. Należy zauważyć, że VESA Adaptive-Sync jest dostępne tylko dla interfejsu DisplayPort w wersji 1.2a lub nowszej.

— USB B (dla sygnału wideo). Rodzaj interfejsu USB służącego do transmisji sygnału wideo. Aby uzyskać szczegółowe informacje na temat ogólnych cech takiego połączenia, zobacz „USB A” powyżej; USB B różni się od A jedynie konstrukcją złącza. Nie wchodząc w szczegóły techniczne, możemy powiedzieć, że pod tym terminem łączone są wszystkie rodzaje wejść USB, które nie należą do Type A lub Type C. Mogą to być na przykład gniazda kwadratowe, podobne do tych stosowanych w drukarkach, lub małe wąskie i długie złącza, tylko trochę większe niż microUSB. Właściwie kluczowymi zaletami USB B są różnorodność wariantów oraz dostępność w każdym przypadku złącza optymalnego dla danego modelu - np. wspomniane wąskie złącze dobrze pasuje do obudów przenośnych ekranów o niewielkiej grubości. Z drugiej strony, takie modele są mniej uniwersalne pod względem podłączenia: do podłączenia do komputera wymagany jest specjalny kabel-adapter. Ten kabel jest zwykle dołączony w zestawie, ale znalezienie zamiennika może być trudne, jeśli zostanie uszkodzony lub zgubiony.

USB C (DisplayPort AltMode). Inna odmiana interfejsu USB używanego do pracy z sygnałem wideo. Cechuje się małymi rozmiarami (niewiele większymi od microUSB) oraz posiada dwustronną konstrukcję, która pozwala na podłączenie wtyczki z dowolnej strony - to sprawia, że Type C jest wygodniejszy niż poprzednie standardy. Jednocześnie zauważamy, że taki monitor można początkowo zaprojektować do podłączenia do wyjścia USB C (przynajmniej taki kabel adaptera może być dostarczony w zestawie), ten punkt warto wyjaśnić osobno.

Interfejs Thunderbolt. Thunderbolt to protokół przesyłania danych (stosowany w urządzeniach Apple), którego przepustowość sięga 40 Gb/s. Sama wtyczka, podobnie jak prędkość, zależy od wersji: Thunderbolt v1 i v2 używają miniDisplayPort (patrz wyżej), monitory z wejściami Thunderbolt niekoniecznie są kompatybilne z oryginalnymi wyjściami miniDisplayPort - warto wyjaśnić tę kompatybilność osobno. Thunderbolt v3 jest oparty na złączu USB C (patrz wyżej).

Złącza (opcjonalnie)

- Wejście mini-Jack (3,5 mm). Wejście audio ze standardowym złączem mini-Jack 3,5 mm. Z reguły wygląda jak gniazdo, do którego podłączona jest wtyczka mini-Jack ze źródła sygnału. Sam sygnał z takiego wejścia może być doprowadzony albo do wbudowanych głośników monitora, albo do wyjścia audio (patrz poniżej).

- Wyjście mini-Jack (3,5 mm). Analogowe wyjście audio za pomocą standardowego gniazda mini-Jack 3,5 mm. Zwykle jest uniwersalne, można je wykorzystać zarówno do podłączenia słuchawek, jak i jako wyjście liniowe dla głośników komputerowych lub innej aktywnego sprzętu audio. Obecność gniazda audio na monitorze jest wygodna, ponieważ taki port jest zwykle bliżej użytkownika niż wyjścia karty dźwiękowej i łatwiej jest podłączyć słuchawki lub głośniki bezpośrednio do monitora niż przeciągać przewód do jednostki systemowej.

- LAN. Standardowe złącze do przewodowego połączenia z sieciami komputerowymi. Obecność takiego wejścia w większości przypadków zmienia monitor w urządzenie sieciowe: każdy użytkownik sieci z odpowiednimi prawami dostępu może wyświetlać na nim obraz. Innym zastosowaniem LAN jest bezpośrednie połączenie z innym urządzeniem. Przykładowo w ten sposób można podłączyć laptopa z wyjściem LAN bez odłączania monitora od komputera stacjonarnego (do którego można go podłączyć np. poprzez interfejs DVI). Niektór...e szczególnie zaawansowane modele mają wbudowane narzędzia programowe, które umożliwiają korzystanie z sieci lokalnej do przeglądania zawartości urządzeń podłączonych do tej sieci, a nawet korzystanie z niektórych usług internetowych bezpośrednio z monitora, bez korzystania z komputera jako takiego.

- Komponentowe. Interfejs analogowy, który przenosi komponenty sygnału wideo przez trzy oddzielne przewody (stąd nazwa). Jest to najbardziej zaawansowany z rozpowszechnionych standardów analogowych, umożliwia przesyłanie obrazów HD i zapewnia lepszą jakość niż S-Video, a tym bardziej złącze kompozytowe. Praktycznie nie występuje w komputerowych kartach graficznych, ale nadal jest dość popularny w różnych urządzeniach wideo; może się przydać do podłączenia monitora do centrum multimedialnego, odtwarzacza DVD lub innego podobnego urządzenia. Co prawda, dźwięk będzie musiał być podłączony przez osobne złącze - interfejs komponentowy nie obsługuje transmisji dźwięku.

- Kompozytowe. Jedno z najprostszych i najpopularniejszych analogowych wejść audio/wideo. Podobnie jak komponentowe, wykorzystuje trzy przewody i w standardowej postaci składa się z trzech złączy RCA; w niektórych monitorach oba interfejsy mogą być nawet realizowane za pomocą jednego zestawu złączy, przełączanych w ustawieniach w tryb „komponentowy” lub „kompozytowy”. Osobliwością tego standardu jest to, że pozwala na przesyłanie zarówno obrazu, jak i dźwięku: jeden z przewodów służy do analogowego sygnału wideo, a dwa pozostałe odpowiadają za lewy i prawy kanał stereo. Co prawda, interfejs kompozytowy jest uważany za przestarzały: ze względu na transmisję wideo jednym kablem jakość i odporność na zakłócenia obrazu są niskie i w ogóle nie ma mowy o rozdzielczościach HD. Z drugiej strony, takie wyjścia są nadal dość popularne w sprzęcie wideo - zarówno nowoczesnym, jak i przestarzałym (jak magnetowidy VHS). Możliwość jednoczesnego podłączenia obrazu i dźwięku jest bardzo wygodna. Jeśli jednak monitor nie ma ani wyjść audio, ani wbudowanych głośników, zwykle dostarcza okrojoną wersję tego złącza - „composite video”, z jednym gniazdem RCA.

- Koncentryczne (S/P-DIF). Wersja elektryczna interfejsu S/P-DIF: przez jedno złącze koncentryczne RCA (tulipan) w postaci cyfrowej jest przesyłany dźwięk, w tym wielokanałowy. Złącze to występuje głównie w wielkoformatowych panelach plazmowych i LCD (patrz „Rodzaj”), gdzie pełni rolę wyjścia do podłączenia zewnętrznych systemów audio - głównie kina domowego i innych zaawansowanych zestawów urządzeń wielokanałowych.

- Liniowe. Interfejs liniowy to standardowy interfejs audio do przesyłania sygnałów audio w formacie analogowym. Ogólnie rzecz biorąc, najpopularniejszym zastosowaniem tego złącza jest przesyłanie dźwięku do aktywnych głośników i/lub zewnętrznego wzmacniacza. Jednak monitory mogą zawierać zarówno wyjścia, jak i wejścia tego typu. W tym sensie interfejs liniowy jest podobny do opisanego powyżej złącza 3,5 mm; ponadto w niektórych modelach właśnie mini-Jack pełni rolę złącza liniowego.

- Optyczne. Inny rodzaj złącza S/P-DIF, oprócz opisanego powyżej wyjścia koncentrycznego. Służy do tego samego celu - do wyprowadzania wielokanałowego dźwięku na zewnętrzny sprzęt audio - jednak wykorzystuje nie kabel elektryczny, ale optyczny (światłowodowy), dzięki czemu takie połączenie absolutnie nie podlega zakłóceniom elektrycznym. Z drugiej strony, z włóknem światłowodowym należy obchodzić się ostrożnie, ponieważ może pękać w wyniku załamań lub silnego nacisku. Warto również zauważyć, że w przeciwieństwie do koncentrycznego, wyjście optyczne znajduje się zarówno w dużych, jak i stosunkowo małych monitorach.

- Port COM (RS-232). Uniwersalny interfejs cyfrowy do przesyłania różnych danych. W monitorach pełni zwykle rolę pomocniczą: pozwala na sterowanie ustawieniami ekranu z podłączonego komputera lub innego urządzenia, a w modelach z ekranami dotykowymi może służyć również do przesyłania danych z czujnika do komputera. Jest znacznie mniej rozpowszechniony niż USB, praktycznie nie jest używany w laptopach, ale ma przewagę w maksymalnej długości kabla - 15 m wobec 5 m.

- S-Video. Jeden z najpopularniejszych analogowych interfejsów wideo, obok opisanych powyżej interfejsów kompozytowych i komponentowych. Sygnał wideo jest przesyłany dwoma oddzielnymi przewodami, dzięki czemu można uzyskać lepszą jakość niż w wideo kompozytowym; i wypada korzystnie w porównaniu z komponentowym interfejsem S-Video w swojej zwartości (oba przewody są podłączane jednym złączem). Transmisja dźwięku przez to połączenie nie jest przewidziana. Ten standard jest uważany za przestarzały moralnie i prawie nie jest używany w komputerach, ale nadal jest stosowany w różnych urządzeniach wideo i może być przydatny w niestandardowych zastosowaniach monitorów.

Funkcje i możliwości

 
Dynamika cen
AOC G2460VQ6 często porównują
AOC G2460PF często porównują