Zakres napięcia wejściowego
Zakres napięcia na wejściu stabilizatora, przy którym może on normalnie pracować i dostarczać do obciążenia stałe napięcie 230 lub 400 V (w zależności od liczby faz, patrz wyżej). Im szerszy jest ten zakres, im bardziej uniwersalne jest urządzenie, tym większe skoki napięcia może tłumić bez przekraczania standardowych parametrów pracy. Należy jednak pamiętać, że parametr ten nie jest jedynym, a nawet nie głównym wskaźnikiem jakości pracy: wiele zależy również od dokładności napięcia wyjściowego i szybkości wyzwalania (patrz oba punkty poniżej ).
Należy również pamiętać, że niektóre modele mogą mieć kilka trybów pracy (na przykład z wyjściem 230 V, 230 V lub 240 V). W tym przypadku, w charakterystyce wskazuje się „całkowity” zakres napięcia wejściowego, od najniższego minimum do najwyższego maksimum; rzeczywiste zakresy dla poszczególnych trybów będą się różnić.
Ponadto istnieją stabilizatory, które mogą pracować poza standardowym zakresem napięcia wejściowego: przy niewielkim odchyleniu poza jego granice urządzenie zapewnia stosunkowo bezpieczne wskaźniki wyjściowe (również przy pewnych odchyleniach od nominalnego 230 lub 400 V), jeśli spadek lub wzrost staje się krytyczny, włącza się odpowiednia ochrona (patrz poniżej).
Dokładność napięcia wyjściowego (±)
Największe odchylenie od znamionowego napięcia wyjściowego (230 V lub 400 V w zależności od liczby faz), jakie dopuszcza stabilizator przy pracy w standardowym zakresie napięcia wejściowego (patrz wyżej). Im mniejsze odchylenie, tym wydajniej urządzenie pracuje, tym dokładniej dopasowuje się do „zmian sytuacji” i tym na mniejsze wahania napięcia narażone jest podłączone obciążenie.
Wybierając według tego parametru, warto przede wszystkim zastanowić się, jak wymagające są podłączone urządzenia pod względem stabilności napięcia. Z jednej strony wysoka stabilność jest dobra dla każdego urządzenia, z drugiej zazwyczaj również oznacza wysoką cenę. W związku z tym, zwykle nie ma sensu kupować zaawansowanego stabilizatora do "bezpretensjonalnych" rodzajów obciążeń, takich jak żarówki i grzejniki, lecz w przypadku wrażliwych urządzeń, takich jak sprzęt audio lub komputery, może być bardzo przydatny.
Prędkość wyzwalania
Prędkość, z którą stabilizator reaguje na zmianę napięcia wejściowego. Określa ją czas, który upływa od momentu skoku napięcia do momentu, gdy urządzenie w pełni dostosuje się do nowych parametrów, a prąd wyjściowy będzie odpowiadał standardowi 230 lub 400 V (w zależności od liczby faz, patrz wyżej). W związku z tym, im krótszy czas wyzwalania, tym lepiej funkcjonuje stabilizator, tym mniejsze prawdopodobieństwo, że przepięcie znacząco wpłynie na podłączony sprzęt. Z drugiej strony, nie wszystkie rodzaje urządzeń elektrycznych są wrażliwe na prędkość - dla niektórych ważniejsza jest płynność regulacji lub dokładność napięcia (patrz wyżej); a sama w sobie, duża prędkość może znacząco wpłynąć na cenę urządzenia. Dlatego wybierając pod względem tego parametru, warto wziąć pod uwagę, jakie urządzenia planuje się podłączać przez stabilizator.
Sprawność
Sprawność stabilizatora to procentowy stosunek ilości energii elektrycznej na wyjściu z urządzenia do ilości energii na wejściu. Innymi słowy, sprawność opisuje, jaka część energii otrzymanej z sieci jest przekazywana przez urządzenie do podłączonego obciążenia bez strat. A straty podczas pracy będą nieuniknione - po pierwsze żaden transformator nie jest doskonały, a po drugie obwody sterujące stabilizatora również wymagają pewnej ilości energii do działania. Jednocześnie wszystkie te koszty są dość niskie, a nawet w stosunkowo prostych nowoczesnych modelach sprawność może sięgać 97-98%.
Woltomierz
Typ woltomierza przewidzianego w konstrukcji stabilizatora, a dokładniej rodzaj skali używanej przez ten przyrząd. Sam w sobie
woltomierz pozwala monitorować napięcie - zwykle zarówno na wejściu, jak i na wyjściu - co ułatwia kontrolowanie pracy stabilizatora. W tym celu najczęściej przewiduje się dwie oddzielne skale, lecz są też „pojedyncze” woltomierze, z przełącznikiem do wyboru między napięciem wejściowym a wyjściowym. I w zależności od rodzaju skali istnieją następujące odmiany:
— Analogowy. Woltomierze analogowe wyposażone są w tradycyjną skalę - z naniesioną na nią podziałką i strzałką. Są prostsze i tańsze niż cyfrowe, lecz mniej dokładne - nawet w najcieńszych urządzeniach margines błędu może wynosić 5-10 V tylko ze względu na specyfikę odczytu informacji z takiej skali. W niektórych niedrogich modelach woltomierze analogowe pełnią rolę wskaźników ogólnych aniżeli precyzyjnych przyrządów. Jednocześnie ta dokładność jest wystarczająca do większości codziennych zadań.
— Cyfrowy. W takich woltomierzach rolę skali pełni wskaźnik cyfrowy, na którym można wyświetlać wartości napięcia z dokładnością do wolta - to główna przewaga tej odmiany nad analogową. Wadami są złożoność i dość wysoki koszt wskaźników cyfrowych. Ponadto tak wysoka dokładność może być istotna w obszarze profesjonalnym, lecz w życiu codziennym nie zawsze jest wymagana. W związku z tym, w niedrogich stabilizatorach małej mocy woltomierz cyfrowy jest
...często bardziej chwytem marketingowym niż realną koniecznością.Instalacja
-
Naścienny. Dany wariant obejmuje dwa sposoby instalacji. Pierwszy, klasyczny wariant to zawieszanie za pomocą zaczepów – na wkręty, gwoździe lub inne podobne przyrządy. Dzięki temu urządzenie nie zajmuje dużo miejsca na podłodze, ponadto użytkownik może wybrać wysokość instalacji; jest to szczególnie przydatne w ciasnych przestrzeniach. Wady tego sposobu, w porównaniu z wariantem wolnostojącym, to konieczność „młotkowania ścian” oraz utrudnione przemieszczanie się z miejsca na miejsce; ponadto źle się on sprawdza w przypadku potężnych i ciężkich urządzeń. Druga odmiana urządzeń naściennych to kompaktowe modele o małej mocy (zwykle przekaźnik napięciowy - patrz „Typ urządzenia”), podłączone do gniazdka nie za pomocą przewodu, lecz za pomocą wtyczki na samej obudowie. W rzeczywistości takie urządzenie jest mocowane bezpośrednio na gniazdku i nie wymaga specjalnej instalacji.
- Wolnostojący. Modele stojące korzystnie wypadają na tle modeli naściennych dzięki swojej prostocie i łatwości instalacji: w rzeczywistości, poza płaską powierzchnią, nic więcej nie jest im potrzebne. Rolę takiej powierzchni może pełnić nie tylko podłoga, ale również półka, blat stołu itp. (najważniejsze jest to, aby taka konstrukcja wytrzymała ciężar stabilizatora), a sama instalacja ogranicza się tylko do przesunięcia stabilizatora do pożądanego punktu w pomieszczeniu. Dodatkowo łatwość przenoszenia z miejsca na miejsce jest ograniczona jedynie wspomnianą w
...agą, a może ona być prawie dowolna. Z tego powodu wśród modeli stojących spotyka się warianty o dowolnej mocy i stopniu „napompowania”. Główną wadą tego sposobu jest potrzeba miejsca pod stabilizator na podłodze lub innej powierzchni.
Zwróć uwagę, że niektóre modele domyślnie pozwalają na instalację zarówno na ścianie jak i na podłodze. Takie urządzenie może się przydać np. jeśli nie zdecydowałeś się jeszcze na konkretny wariant lub sytuacja może się w każdej chwili zmienić. Ponadto technicznie możliwe jest postawienie modelu ściennego na podłodze, a także wyposażenie modelu stojącego w mocowania i powieszenie go na ścianie, lecz zazwyczaj takie sztuczki co najmniej nie mają sensu, a nawet mogą prowadzić do nieprzyjemnych konsekwencji (takie jak przegrzanie lub uszkodzenie mocowań).Uchwyt do przenoszenia
Obecność w konstrukcji stabilizatora specjalnego uchwytu
do przenoszenia urządzenia z miejsca na miejsce. Funkcja ta jest przydatna przede wszystkim w przypadku potężnych i odpowiednio ciężkich urządzeń, których trzymanie bezpośrednio przy ciele byłoby niewygodne. A w najbardziej „ciężkich” modelach, które nie są przeznaczone do samodzielnego noszenia, przewidywane są kilka uchwytów.