Jasność
Maksymalna jasność, jaką może zapewnić ekran laptopa.
Im jaśniejsze światło otoczenia, tym jaśniejszy musi być ekran laptopa, w przeciwnym razie obraz na nim może być trudny do odczytania. I odwrotnie, przy słabym świetle otoczenia wysoka jasność nie jest konieczna - powoduje duże obciążenie oczu (jednak w tym przypadku wszystkie współczesne laptopy są wyposażone w kontrolę jasności). W związku z tym im wyższy wskaźnik ten, tym bardziej uniwersalny jest ekran, tym szerszy jest zakres warunków, w których można go efektywnie używać. Wadą tych korzyści jest wzrost ceny i zużycia energii.
Jeśli chodzi o konkretne wartości, wiele współczesnych laptopów ma jasność
250 – 300 nitów lub nawet
mniej. To wystarcza do pracy przy sztucznym oświetleniu o średniej intensywności, lecz przy jasnym naturalnym świetle mogą już wystąpić problemy z widocznością. Do użytku przy słonecznej pogodzie (szczególnie na zewnątrz) pożądany jest zapas jasności co najmniej
300 – 350 nitów. A w najbardziej zaawansowanych modelach parametr ten może wynosić
350 – 400 nitów,
401 – 500 nitów a nawet
ponad 500 nitów.
Kontrast
Kontrast ekranu zainstalowanego w laptopie.
Kontrast to największa różnica w jasności między najjaśniejszą bielą a najciemniejszą czernią, jaką można uzyskać na jednym ekranie. Jest zapisywany jako współczynnik, na przykład rzędu 560:1; przy czym im wyższa pierwsza liczba, tym wyższy kontrast, tym bardziej zaawansowany jest ekran i tym lepszą jakość obrazu można na nim osiągnąć. Jest to szczególnie zauważalne przy dużych różnicach w jasności w obrębie jednej klatki: przy niskim kontraście pojedyncze szczegóły znajdujące się w najciemniejszych lub najjaśniejszych obszarach obrazu mogą zostać utracone, zwiększenie kontrastu pozwala w pewnym stopniu wyeliminować to zjawisko. Wadą tych korzyści jest zwiększony koszt.
Osobno należy podkreślić, że w tym przypadku wskazany jest tylko kontrast statyczny - różnica osiągana w ramach jednej klatki podczas normalnej pracy, przy stałej jasności i bez użycia specjalnych technologii. W celach reklamowych niektórzy producenci mogą również podawać dane o tzw. kontraście dynamicznym - można go mierzyć w bardzo imponujących liczbach (siedmiocyfrowych lub więcej). Warto jednak skupić się przede wszystkim na statycznym kontraście - to podstawowa cecha każdego wyświetlacza.
Jeśli chodzi o konkretne wartości, nawet na najbardziej zaawansowanych ekranach wartość ta nie przekracza 2000:1. Ogólnie rzecz biorąc, współczesne laptopy mają raczej niski kontrast - zakłada się, że do zadań wymagających bardziej zaawansowa...nych właściwości obrazu rozsądniej jest użyć ekranu zewnętrznego (monitora lub telewizora).
Certyfikat TÜV Rheinland
Certyfikat wyświetlacza laptopa potwierdzający bezpieczny poziom emisji niebieskiego światła i współczynnik migotania panelu.
Obecność certyfikatu TÜV Rheinland potwierdza, że ekran jest wygodny dla oczu.
TÜV Rheinland to duży międzynarodowy koncern z siedzibą w Kolonii w Niemczech, świadczący szeroki zakres usług audytorskich. Specjaliści firmy opracowali i zatwierdzili szereg testów, których celem jest określenie, czy ekrany urządzeń mobilnych, monitorów i telewizorów spełniają wymagany poziom ochrony oczu przed szkodliwym wpływem promieniowania z wyświetlaczy na wzrok użytkownika znajdującego się po drugiej stronie ekranu. Autorytatywna opinia TÜV Rheinland jest szanowana w społeczności technologicznej. Certyfikaty tej jednostki wydawane są pomyślnie przetestowanym próbkom elektroniki dla wdrożonych technologii filtrowania niebieskiego światła i tłumienia migotania ekranu.
Test Passmark CPU Mark
Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.
Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).
Maksymalna obsługiwana ilość pamięci RAM
Maksymalna ilość pamięci RAM, którą można zainstalować na laptopie. Zależy w szczególności od rodzaju stosowanych modułów pamięci, a także od liczby gniazd na nie. Warto zwrócić uwagę na parametr ten przede wszystkim, jeśli laptop jest kupowany z dalszą perspektywą na
rozszerzenie ilości RAM, a ilość faktycznie zainstalowanej w nim pamięci jest zauważalnie mniejsza niż maksymalna dostępna. Tak więc w laptopach pamięć RAM można rozbudować do
16 GB,
24 GB,
32 GB, 48 GB,
64 GB i nawet więcej —
128 GB.
Liczba gniazd pamięci
Łączna liczba slotów na moduły RAM w laptopie; w rzeczywistości - maksymalna liczba kości, które można jednocześnie zainstalować w danym modelu.
Możliwość aktualizacji pamięci RAM bezpośrednio zależy od tego wskaźnika. Tak więc w niedrogich modelach często jest tylko
1 slot, a jedyną opcją aktualizacji jest zastąpienie „natywnej” kości. W bardziej zaawansowanych urządzeniach można przewidzieć
dwa, a nawet
cztery sloty, podczas gdy niektóre z nich mogą być wolne w początkowej konfiguracji.
Specjalnym przypadkiem jest wbudowana pamięć RAM; jest bardziej kompaktowa i tańsza niż wymienne moduły, ale w ogóle nie podlega wymianie. Jednocześnie w niektórych laptopach pamięć RAM jest
tylko wbudowana, w innych można ją uzupełnić
jednym lub nawet dwoma slotami na wymienne kości.
Interfejs dysku SSD M.2
Interfejs podłączenia, używany przez moduł SSD ze złączem M.2 zainstalowanym w laptopie (patrz „Typ dysku”).
Jedną z cech złącza M.2 i dysków z takim złączem jest to, że mogą korzystać z dwóch różnych interfejsów połączeniowych: PCI-E (w tej czy innej odmianie) lub SATA. Warto podkreślić, że ten punkt wskazuje dane modułu SSD; w samym złączu mogą być zapewnione inne opcje interfejsu, w tym bardziej zaawansowane - patrz „Interfejs łącza M.2” (na przykład dysk ze złączem
PCI-E 3.0 można umieścić w gnieździe obsługującym również szybsze złącze
PCI-E 4.0). Jednak w każdym przypadku złącze połączeniowe zwykle pozwala realizować wszystkie możliwości zainstalowanego dysku; więc ta pozycja pozwala dość rzetelnie ocenić możliwości standardowego modułu M.2.
Jeśli chodzi o konkretne interfejsy, obecnie można znaleźć głównie następujące warianty:
- SATA 3. Interfejs SATA został pierwotnie stworzony dla tradycyjnych dysków twardych. Trzecia wersja tego interfejsu jest najnowsza; zapewnia prędkość transmisji danych do 600 MB/s. To znacznie mniej niż ma PCI-E i ogólnie bardzo mało jak na standardy dysków SSD. Dlatego połączenie M.2 za pomocą SATA jest typowe głównie dla niedrogich modułów poziomu podstawowego. Jednak nawet takie nośniki są generalnie szybsze niż większość dysków twardych.
- PCI-E. Uniwersalny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Zapewnia g
...eneralnie większe prędkości niż SATA, dzięki czemu lepiej nadaje się do modułów SSD: teoretycznie PCI-E pozwala dyskom SSD, nawet najszybszym, na osiągnięcie pełnego potencjału. W praktyce obsługiwana prędkość transmisji danych może być różna - w zależności od wersji interfejsu i liczby linii (kanałów transmisji danych). Oto warianty najbardziej odpowiednie dla współczesnych laptopów:
- PCI-E 3.0 2x. Połączenie za pomocą 2 linii PCI-E w wersji 3.0. Ta wersja zapewnia prędkość około 1 GB/s na linię; w związku z tym obydwie linie dają maksymalnie nieco poniżej 2 GB/s.
- PCI-E 3.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 3.0. Zapewnia maksymalną prędkość około 4 GB/s.
- PCI-E 4.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 4.0. W tej wersji przepustowość w porównaniu do PCI-E 3.0 została podwojona - tym samym 4 linie dają maksymalną prędkość około 8 MB/s.
Warto zaznaczyć, że w przypadku złączy M.2 różne odmiany PCI-E są zwykle ze sobą dość kompatybilne - chyba że prędkość połączenia podczas pracy z obcym złączem będzie ograniczona możliwościami najwolniejszego komponentu. Na przykład podczas podłączenia modułu SSD PCI-E 3.0 4x do gniazda PCI-E 3.0 2x prędkość ta będzie odpowiadać możliwościom złącza, a podczas podłączenia do PCI-E 4.0 4x - możliwościom dysku.Interfejs złącza M.2
Interfejs głównego złącza M.2 w laptopie.
W tym przypadku głównym jest złącze, w którym jest zainstalowano dysk SSD M.2 (patrz „Typ dysku”). Interfejs samego dysku jest wskazywany osobno (patrz wyżej), a interfejs złącza jest określony, jeśli złącze obsługuje bardziej zaawansowany typ połączenia niż zainstalowane w nim urządzenie. Jako przykład można przytoczyć następującą sytuację: samo urządzenie pracuje zgodnie ze standardem SATA lub PCI-E 3.0 2x (patrz „Interfejs dysku M.2” powyżej), a złącze na płycie może współpracować z interfejsem PCI-E 3.0 4x.
Informacje takie przydadzą się przede wszystkim do oceny możliwości upgrade'u laptopa (z wymianą standardowego modułu SSD na szybszy). Obecnie w tym punkcie można znaleźć głównie następujące opcje:
- PCI-E 3.0 2x. W rzeczywistości najskromniejszy standard PCI-E, który można znaleźć w portach M.2 współczesnych laptopów: połączenie za pomocą 2 linii PCI-E w wersji 3.0. Ta wersja zapewnia prędkość około 1 GB/s na linię; w związku z tym obydwie linie dają maksymalnie nieco poniżej 2 GB/s.
- PCI-E 3.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 3.0. Zapewnia maksymalną prędkość około 4 GB/s.
- PCI-E 4.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 4.0. W tej wersji przepustowość w porównaniu do PCI-E 3.0 została podwojona - więc 4 linie dają przepustowość około 8 GB/s.
- PCI-E. Połączenie PCI-E, dla którego producent nie podał szczegółów (wersji i lic...zby linii).
Warto przypomniec, że w przypadku złączy M.2 różne opcje PCI-E są ze sobą dość kompatybilne - chyba, że prędkość będzie ograniczona możliwościami wolniejszego komponentu. W praktyce oznacza to, że np. do złącza M.2 z interfejsem PCI-E 3.0 4x całkiem możliwe jest podłączenie dysku dla PCI-E 3.0 2x lub nawet PCI-E 4.0 4x; w pierwszym przypadku prędkość będzie ograniczona możliwościami dysku, w drugim - możliwościami złącza.
Rozmiar dysku M.2
Rozmiar modułu SSD M.2 (patrz „Typ dysku") zainstalowanego w laptopie. Określony w formacie „szerokość x długość”.
Parametr ten przede wszystkim pozwala oszacować ilość miejsca wydzielonego na dysk oraz możliwość jego wymiany na moduł o innym rozmiarze. Warto tu zaznaczyć, że sam standard M.2 przewiduje kilka wariantów długości i szerokości, jednak najbardziej rozpowszechnione są płyty o szerokości 22 mm. Długość takiej płyty zwykle odpowiada jednej ze standardowych opcji: 30 mm, 42 mm, 60 mm, 80 mm i 110 mm.
Generalnie montaż krótszego modułu o tej samej szerokości (na przykład 22x42 mm zamiast 22x60 mm) nie sprawia problemów, jednak możliwość zastosowania większych komponentów należy wyjaśniać osobno - nie każda obudowa pozwala na montaż M. 2 dysków o długości większej niż ma moduł standardowy. Jeśli chodzi o konkretne rozmiary, najczęściej we współczesnych laptopach są dyski SSD M.2 22x80 mm: ten rozmiar gwarantuje wymianę dysku „natywnego” na prawie każdy moduł w standardzie 22 mm (z wyjątkiem największych, 22x110 mm - a nawet dla nich może być miejsce). Są też mniejsze rozmiary - 22x60 mm, 22x42 mm, a nawet 22x30 mm - jednak znacznie rzadziej. I tutaj warto powiedzieć, że im krótsza długość modułu SSD, tym z reguły mniejsza jego pojemność.
Należy zaznaczyć, że współczesne laptopy również używają modułów M.2 o innej szerokości - zwykle 16 mm o długości 20 mm (16x20 mm). Jest to jednak bardzo rzadki wariant.