Польща
Каталог   /   Фототехніка   /   Оптичні прилади   /   Телескопи

Порівняння Celestron AstroMaster 130 EQ vs Arsenal 130/650 EQ2

Додати до порівняння
Celestron AstroMaster 130 EQ
Arsenal 130/650 EQ2
Celestron AstroMaster 130 EQArsenal 130/650 EQ2
Порівняти ціни 5
від 1 836 zł
Товар застарів
Відгуки
0
0
11
0
0
0
1
ТОП продавці
Стандартна т-різьба (М42) дозволяє встановити дзеркальну фотокамеру.
Конструкціядзеркальний (рефлектори)дзеркальний (рефлектори)
Тип монтуванняекваторіальнаекваторіальна (EQ2)
Характеристики
Діаметр об'єктива130 мм130 мм
Фокусна відстань650 мм650 мм
Макс. корисне збільшення260 x260 x
Макс. дозволяюче збільшення195 x195 x
Мін. збільшення19 x19 x
Світлосила1/51/5
Проникна здатність13.1 зор.вел13.1 зор.вел
Роздільна здатність (Dawes)0.89 кут.с0.88 кут.с
Роздільна здатність (Rayleigh)1.07 кут. с
Додатково
Шукачз точковою наводкою (LED)з точковою наводкою (LED)
Фокусеррейковийрейковий
Окуляри17 мм, 6.3 мм
Посадковий діаметр окуляра1.25 "1.25 "
Просвітлення оптики
Дзеркалосферичнепараболічний
Встановлення фотокамери
Інше
Кріплення трубикріпильні кільцякріпильні кільця
Довжина труби61 см
Загальна вага16.66 кг12 кг
Дата додавання на E-Katalogберезень 2015березень 2015
Глосарій

Тип монтування

Тип монтування, яким оснащений телескоп.

Монтування – це механічний вузол, за допомогою якого телескоп кріпиться до штатива або ( в окремих варіантах) встановлюється прямо на землю. Крім кріплення, цей вузол відповідає також за наведення оптики в певну точку неба. Найбільшою популярністю в наш час користуються азимутальні пристосування в різних варіаціях — AZ1, AZ2, AZ3, а також у вигляді так званого монтування Добсона. Екваторіальні механізми різних моделей (EQ1, EQ2, EQ3, EQ4, EQ5) помітно складніше і дорожче, зате і можливостей дають більше. Зустрічаються системи, що поєднують відразу обидва ці типи монтувань — так звані азимутально-екваторіальні. І, нарешті, окремі телескопи і взагалі постачаються без монтування. Ось більш докладний опис цих варіантів:

— Азимутальне. Повна назва – «альт-азимутальна». Традиційно має дві осі повороту телескопа – одну для наведення за висотою, другу за азимутом. Різні моделі таких монтувань розрізняються за додатковими можливостями управління:
  • AZ1. Не мають системи точного руху....
  • AZ2. Оснащені системою точного руху по вертикалі (навколо горизонтальної осі).
  • AZ3. Оснащені системами точного руху по обох осях.
У будь-якому разі друга вісь (азимутальна) в таких системах завжди розташовується вертикально, незалежно від географічного положення телескопа; в цьому і полягає ключова відмінність від описаних нижче екваторіальних монтувань. В цілому азимутальні механізми досить прості і недорогі самі по собі, при цьому цілком зручні і практичні, завдяки чому саме даний варіант користується найбільшою популярністю в наш час. Крім того, вони ідеально підходять для спостережень за наземними об'єктами. Ключовим недоліком даного варіанту є слабка придатність до безперервного «супроводу» небесних тіл (що рухаються по небосхилу внаслідок обертання Землі). Якщо в правильно налаштованому екваторіальному механізмі для цього потрібно повертати телескоп всього по одній осі, то в азимутальному потрібно задіяти обидві осі, причому нерівномірно. Ситуацію можна вирішити за допомогою системи автостеження, але ця функція помітно впливає на ціну всього приладу. І навіть її наявність не гарантує, що телескоп підійде для астрофотографії на тривалих витримках — адже при такому використанні потрібно забезпечувати не тільки точний рух по кожній окремій осі, але ще поправку на поворот зображення в кадрі (що передбачається далеко не в кожній системі автостеження і ще більше збільшує ціну).

– Добсона. Специфічний різновид описаних вище азимутальних монтувань, що застосовується майже виключно в рефлекторах. Також передбачає дві осі обертання – горизонтальну і вертикальну. Ключовою особливістю монтування Добсона є те, що воно не розраховане на штатив і встановлюється прямо на землю або іншу рівну поверхню; для цього в конструкції передбачається широка масивна основа. Подібні системи відмінно підходять для телескопів Ньютона, у яких окуляр розташовується в передній частині: завдяки низькому розташуванню тубуса на монтуванні сам окуляр виявляється на досить зручній висоті. Також до переваг «добсонів» можна віднести простоту, невисоку вартість і водночас гарну надійність, що робить їх придатними навіть для великих та важких телескопів. З недоліків слід відзначити слабку сумісність з нерівними поверхнями, особливо твердими, на зразок суцільної скелі (тоді як штативи, що використовуються з іншими типами монтувань, цього недоліку позбавлені).

— Екваторіальне. Монтування цього типу дають змогу синхронізувати рух телескопа з рухом небесних тіл по небосхилу, що виникає через обертання Землі. Умовну вертикальну вісь, що відповідає за поворот телескопа з боку в бік, в таких механізмах називають віссю прямого сходження (R. A.), А горизонтальну (для наведення по умовній вертикалі) — віссю схилень (Dec.). Перед використанням екваторіальне монтування налаштовується так, щоб вісь прямого сходження була спрямована на «полюс світу», паралельно осі обертання Землі («осі світу»); конкретний нахил щодо вертикалі залежить від географічної широти місця спостережень. Такий формат роботи помітно ускладнює як конструкцію самої монтування, так і процедуру його встановлення. З іншого боку, екваторіальні системи ідеально підходять для тривалого «супроводу» астрономічних об'єктів: щоб компенсувати рух небесного тіла через обертання Землі і утримувати ціль в полі зору, досить обертати телескоп навколо осі R.A. вправо (за годинниковою стрілкою), причому з чітко визначеною швидкістю – 15° на годину, незалежно від положення об'єкта по вертикалі. Це робить подібні конструкції ідеальним варіантом для астрофотографії – в тому числі об'єктів далекого космосу, для яких потрібні тривалі витримки. Фактично для цього навіть не потрібна повноцінна система автостеження – досить порівняно простого годинникового механізму, що обертає телескоп навколо осі прямого сходження. Зворотною стороною цих переваг, крім згаданої складності і високої вартості, є слабка придатність для великих важких телескопів — зі збільшенням ваги приладу вага підходящої екваторіальної системи збільшується ще швидше.
Що стосується різних моделей подібних монтувань, то вони маркуються буквено-цифровим індексом, від EQ1 до EQ5. В цілому чим більше кількість в позначенні – тим більше і важче сама конструкція (включаючи триногу, якщо вона постачається в комплекті), тим гірше вона підходить для переміщення з місця на місце, проте тим краще гасить вібрації і струси. А ось обмеження за вагою телескопа з моделлю екваторіального монтування безпосередньо не пов'язані.

– Азимутально-екваторіальне. Механізми, що поєднують в собі відразу два типи монтувань. Виглядає це так: на штатив встановлена азимутальна система, а на ній — екваторіальна, в якій вже кріпиться телескоп. Подібна конструкція дає змогу використовувати можливості обох типів монтувань. Так, азимутальний механізм цілком підходить для спостережень за великими небесними тілами ближнього космосу (Місяць, планети) і великими ділянками неба (такими, як сузір'я), при цьому він не потребує складного попереднього налаштування. А для астрофотозйомки або для розглядання об'єктів далекого космосу на великих збільшеннях зручніше використовувати екваторіальну систему. Однак на практиці подібна універсальність потрібна вкрай рідко, притому що поєднання двох типів монтувань ускладнює конструкцію, збільшує її вартість і знижує надійність. Так що цей варіант можна зустріти в одиничних моделях телескопів.

– Без монтування. Повна відсутність монтувальної системи в комплекті не дає змогу застосовувати телескоп «з коробки». Проте, вона буває оптимальним варіантом в деяких ситуаціях. Перша – якщо користувач хоче вибрати монтування на свій розсуд, не покладаючись на рішення виробника, або навіть зібрати його самостійно (наприклад, досить багато астрономів виготовляють свої власні системи Добсона). Другий характерний варіант – якщо в господарстві вже є монтування (наприклад, від старого телескопа, який прийшов в непридатність), і переплачувати за друге просто немає сенсу. У будь-якому разі при виборі подібної моделі варто звертати особливу увагу на тип кріплення, на який розрахована труба – від нього напряму залежить сумісність з конкретним монтуванням.

Роздільна здатність (Dawes)

Роздільна здатність телескопа, визначена згідно з критерієм Дауеса (Dawes). Також цей показник називають «межа Дауеса». (Зустрічається також прочитання «Дейвса», але воно не є вірним).

Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частину градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижче цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливості бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутому світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.

Згідно з критерієм Дауеса роздільна здатність безпосередньо залежить від діаметра об'єктива телескопа (див. вище): чим більший апертура, тим менше може бути кут між окремо видимими об'єктами і тим вище роздільна здатність. За загальним принципом цей показник аналогічний критерієм Релея (див. «Роздільна здатність (Рел...ея)»), проте він був виведений експериментальним шляхом, а не теоретично. Тому, з одного боку, межа Дауеса точніше описує практичні можливості телескопа, з іншого — відповідність цих можливостей багато в чому залежить суб'єктивних особливостей спостерігача. Простіше кажучи, людина без досвіду спостережень за подвійними об'єктами, або має проблеми із зором, може просто «не впізнати» у витягнутому плямі два джерела світла, якщо вони будуть розташовуватися на відстані, порівнянному з межею Дауеса. Додатково про різницю між критеріями див. «Роздільна здатність (Релея)».

Роздільна здатність (Rayleigh)

Роздільна здатність телескопа, визначена згідно з критерієм Релея (Rayleigh).

Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частина градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижчі цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливість бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутій світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.

Критерій Релея є теоретичною величиною і розраховується за досить складною формулою, що враховує, крім діаметра об'єктива телескопа (див. вище), також довжину хвилі спостережуваного світу, відстані між об'єктами і до спостерігача і т. ін. Окремо видимими, згідно з даним методом, вважаються об'єкти, розташовані на більшій відстані один від одного, ніж для описаної вище межі Дауеса; тому для одного і того ж телескопа...роздільна здатність по Релею буде нижче, ніж по Дауесу (а цифри, зазначені у цьому пункті — відповідно, більші). З іншого боку, даний показник менше залежить від особистих особливостей користувача: розрізнити об'єкти на відстані, яка відповіднає критерію Релея, можуть навіть недосвідчені спостерігачі.

Окуляри

В даному пункті зазначаються окуляри, що входять у штатний комплект поставки телескопа, точніше — фокусні відстані цих окулярів.

Маючи ці дані і знаючи фокусна відстань телескопа (див. вище), можна визначити ступінь збільшення, що пристрій може видавати в комплектації «з коробки». Для телескопа без лінз Барлоу (див. нижче) та інших додаткових елементів подібного призначення кратність дорівнює фокусній відстані об'єктива, поделенному на фокусна відстань окуляра. Наприклад, оптика на 1000 мм, укомплектована «вічками» на 5 та 10 мм, буде здатна видати збільшення 1000/5=200х і 1000/10=100х.

За відсутності відповідного окуляра в комплекті його, зазвичай, можна докупити окремо.

Просвітлення оптики

Наявність просвітлюючого покриття на поверхні лінз, а іноді – також призм телескопа. Таке покриття створює на скляній поверхні характерні кольорові відблиски або райдужні розводи.

Сенс просвітлення зрозумілий вже з назви: така особливість покращує загальне світлопропускання, забезпечуючи таким чином більш світле, чітке і якісне зображення. Для телескопів це особливо важливо, оскільки такі прилади застосовуються переважно в нічний час і мають справу з дуже невеликою кількістю світла. Загальний принцип роботи просвітлюючих покриттів полягає в тому, що вони знижують коефіцієнт відбиття лінзи/призми, даючи можливість більшій кількості світла проходити через неї. На практиці це реалізується так: світло проходить через покриття до основного скла, відбивається від нього, однак замість того, щоб розсіятися — досягає межі між покриттям і повітрям і відбивається вже від неї, розвертаючись «назад» в первісний напрямок. Подібним чином можна знизити втрати світла на відображення з 5 % (лінза без покриття) до 1% при одношаровому і 0,2% і навіть менше при багатошаровому просвітленні; при цьому, завдяки мікроскопічній товщині, подібні покриття не вносять геометричних спотворень у видиме зображення.

Як правило, тип просвітлення додатково уточнюється в документації виробника, і а іноді і прямо в характеристиках. Всього основних типів 4, ось їх основні особливості:

– Одношарове (C). Один шар покриття на окремих (не на всіх) оптичних елементах, а найчастіше — і в...зашалі тільки лише на зовнішній поверхні об'єкта. Це найбільш простий і недорогий варіант, застосовуваний переважно в недорогих моделях, не розрахованих на серйозні завдання. Пов'язано це з тим, що в цілому одношарове просвітлення діє лише на частину видимого спектру, через що поступається багатошаровому як за ефективністю, так і за достовірністю кольоропередачі (іноді спотворення кольорів можуть бути вельми помітними). А в даному разі таке покриття ще й нанесено не на все, а лише на окремі деталі оптичної системи. Так що хоча одношарове просвітлення краще, ніж взагалі ніяке, але підходить воно переважно для розважального застосування.

– Повне одношарове (FC). Одношарове покриття, нанесене на всі оптичні елементи телескопа. Дає максимальну ефективність, доступну для подібних покриттів в принципі. Однак оскільки даний тип покриття ефективний лише для відносно невеликої частини видимого спектру, то якість передачі кольорів все одно виходить нижче, ніж в багатошарових системах.

– Багатошарове (MC). Покриття з декількох шарів з різними показниками заломлення, нанесене на один або на кілька елементів оптики (але не на все). Кількість шарів може бути різною — від 2 – 3 в порівняно недорогих рішеннях до 6 – 8 і більше в висококласних телескопах. Однак навіть порівняно прості багатошарові покриття перекривають практично весь видимий спектр і в рази перевершують одношарові за ступенем зниження відображень. Так що якщо для вас важливі гарна яскравість і достовірна кольоропередача — то даний варіант буде кращим, ніж навіть повне одношарове просвітлення, не кажучи вже про неповне. З іншого боку, і обходиться така оптика дорожче рішень з одним шаром просвітлюючого покриття.

– Повне багатошарове. Найбільш прогресивний тип просвітлення: багатошарове покриття, нанесене на всі елементи оптичної системи. Цей варіант забезпечує надзвичайно високе світлопропускання і достовірну кольоропередачу, однак і обходиться недешево. Тому його можна зустріти переважно серед висококласних телескопів; а спеціально шукати модель з таким просвітленням варто тоді, коли і яскравість картинки, і достовірність кольорів мають для вас принципове значення.

Дзеркало

Тип дзеркала, встановленого в рефлекторі або комбінованій моделі (див. «Конструкція»).

Нагадаємо, дзеркало в таких моделях виконує ту ж функцію, що і лінза об'єктива в класичних телескопах-рефракторах — тобто безпосередньо відповідає за збільшення зображення. Тип дзеркала вказується за його загальною формою:

— Сферичне. Найбільш поширений варіант, що пов'язано в першу чергу з простотою виробництва і, як наслідок, невисокою вартістю. З іншого боку, сферичне дзеркало чисто технічно не здатне так ефективно сконцентрувати пучок світла, як це робить параболічне. Через це виникають спотворення, відомі як сферичні аберації; вони можуть привести до помітного погіршення різкості, причому найбільш помітним цей ефект стає на високих кратностях. Правда, є телескопи, практично не схильні до цього явища – а саме довгофокусні моделі, в яких фокусна відстань в 8 – 10 разів перевищує діаметр дзеркала; однак такі прилади виходять громіздкими і важкими. У світлі цього спеціально шукати моделі з таким типом дзеркал варто в основному в двох ситуаціях: або якщо телескоп планується застосовувати на порівняно невеликій кратності (наприклад, для спостережень за Місяцем, планетами, сузір'ями), або якщо вас не бентежать габарити і вага.

Параболічне. Дзеркала у формі параболоїда обертання практично ідеально концентрують потрапляючі в телескоп промені в потрібній точці оптичної системи. Завдяки цьому рефлектори з такими оснащенням да...ють дуже чітке зображення навіть при високій кратності збільшення і незалежно від фокусної відстані. Головний недолік цього типу дзеркал – досить висока вартість, пов'язана зі складністю у виробництві. Так що звертати увагу на параболічні рефлектори має сенс перш за все тоді, коли описані переваги однозначно переважують; характерний приклад — пошук порівняно компактного телескопа для спостереження за об'єктами далекого космосу.

Встановлення фотокамери

Можливість встановлення фотокамери дає можливість використовувати телескоп для астрофотографії, не вносячи в конструкцію додаткових змін.

Для кріплення камери в телескопах зазвичай передбачається стандартне різьбове з'єднання «T-mount» (точніше, «T2 mount»: оригінальне кріплення типу «Т» має менші розміри, проте в наш час майже не зустрічається). Таке з'єднання дає змогу встановлювати не тільки спеціалізовані «астрономічні» камери, але і звичайні фотоапарати зі змінною оптикою (дзеркальні і «бездзеркальні»). Правда, для сучасної цифрової камери знадобиться перехідник, оскільки першопочатково такі моделі здебільшого використовують інші види кріплень; однак знайти такий перехідник зазвичай не становить проблем. А деякі застарілі апарати (переважно плівкові) першопочатково використовують T2-mount і можуть встановлюватися напряму, без адаптера.

Нагадаємо також, що астрофотографія нерідко передбачає довгі витримки, і для таких умов оптимальним варіантом буде екваторіальна система монтування (див. «Монтування»).

Загальна вага

Загальна вага телескопа в зірці – з урахуванням монтування і штатива.

Невелика вага зручна насамперед для «похідного» застосування і частих переміщень з місця на місце. Однак зворотною стороною цього є скромні характеристики, висока вартість, а іноді — і те, і інше. Крім того, легша підставка гірше згладжує струси і вібрації, що може бути актуальним в деяких ситуаціях (наприклад, якщо місце спостереження знаходиться недалеко від залізниці, де часто проходять товарні поїзди).
Динаміка цін
Celestron AstroMaster 130 EQ часто порівнюють
Arsenal 130/650 EQ2 часто порівнюють