Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Zasilacze awaryjne (UPS)

Porównanie Logicpower LPY-B-PSW-1500VA Plus 1500 VA vs Logicpower LPY-PSW-800VA Plus 800 VA

Dodaj do porównania
Logicpower LPY-B-PSW-1500VA Plus 1500 VA
Logicpower LPY-PSW-800VA Plus 800 VA
Logicpower LPY-B-PSW-1500VA Plus 1500 VALogicpower LPY-PSW-800VA Plus 800 VA
od 634 zł
Produkt jest niedostępny
od 487 zł
Produkt jest niedostępny
Opinie
1
0
1
0
0
13
0
TOP sprzedawcy
Rodzajinteraktywnyinteraktywny
Rodzajzwykły (Tower)zwykły (Tower)
Czas przełączania na baterię4 ms3 ms
Wejście
Napięcie wejściowe1 faza (230V)1 faza (230V)
Zakres napięcia wejściowego140-275 В140-275 В
Prąd maksymalny20 А
Bypass (podłączenie bezpośrednie)ręcznyręczny
Wyjście
Napięcie wyjściowe1 faza (230V)1 faza (230V)
Najwyższa moc wyjściowa1500 VA800 VA
Nominalna moc wyjściowa1050 W560 W
Dokładność napięcia wyjściowego10 %3 %
Kształt przebiegu sinusoidyczysta sinusoida (PSW)czysta sinusoida (PSW)
Częstotliwość wyjściowa50-60 Hz50-60 Hz
Liczba gniazd z rezerwą2 szt.2 szt.
Typ gniazdtyp F (Schuko)typ F (Schuko)
Bateria
Akumulator w zestawie
brak
brak
Podłączenie baterii do UPS24 В12 В
Min. prąd ładowania10 А5 А
Maks. prąd ładowania15 А15 А
Regulacja prądu ładowania
Obsługa ładowania LiFePO4
Zimny start
Podłączanie zewnętrznego akumulatora
Zabezpieczenia
Zabezpieczenia
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przeładowaniem akumulatora zewnętrznego
filtrowanie szumów
sygnalizacja dźwiękowa
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przeładowaniem akumulatora zewnętrznego
sygnalizacja dźwiękowa
Bezpiecznikautomatycznyautomatyczny
Dane ogólne
Wyświetlacz
Uchwyt do przenoszenia
Temperatura robocza0 – 40 °C0 – 40 °C
Wymiary (WxSxG)265x170x310 mm180x145x230 mm
Waga10.1 kg4.6 kg
Data dodania do E-Katalogczerwiec 2018czerwiec 2015
Glosariusz

Czas przełączania na baterię

Czas wymagany do przełączenia obciążenia z zasilania sieciowego na zasilanie bateryjne. W zasilaczach awaryjnych i interaktywnych(patrz "Rodzaj") w tym momencie występuje krótkotrwały zanik napięcia - odpowiednio im krótszy czas transferu na baterię, tym bardziej równomierną moc zapewnia źródło w przypadku awarii zasilania. Idealnie, czas transferu dla konwencjonalnej częstotliwości 50 Hz AC nie powinien przekraczać 5 ms (ćwierć jednego cyklu sinusoidalnego). Zasilacze inwerterowe UPS mają z definicji zerowy czas transferu.

Prąd maksymalny

Maksymalny prąd pobierany przez UPS. W praktyce maksymalne natężenie prądu osiągane jest tylko wtedy, gdy UPS pracuje na zasilaniu sieciowym z maksymalną obciążalnością i całkowicie rozładowaną baterią. Nie mniej jednak, przy obliczaniu obciążenia sieci elektrycznej należy wziąć pod uwagę parametr ten.

Najwyższa moc wyjściowa

Maksymalna moc wyjściowa dostarczana przez UPS, innymi słowy, maksymalna pozorna moc obciążenia, jaką model może obsłużyć.

Wskaźnik ten jest mierzony w woltoamperach (ogólne znaczenie tej jednostki jest takie samo jak wat, a różne nazwy są używane do wyszczególnienia). Całkowity pobór mocy obciążenia, implikowany w tym przypadku, jest sumą dwóch mocy – czynnej i biernej. Moc czynna jest w rzeczywistości mocą efektywną (w charakterystyce urządzeń elektrycznych jest ona określana w watach). Moc bierna nazywana jest mocą daremnie zużywaną przez cewki i kondensatory w urządzeniach prądu przemiennego; przy dużej liczbie cewek i/lub kondensatorów, moc ta może stanowić dość znaczną część całkowitego zużycia energii. Zwróć uwagę, że do prostych zadań można posługiwać się danymi o mocy efektywnej (często jest ona podawana dla UPS - patrz niżej); lecz dla dokładnych obliczeń elektrotechnicznych należy użyć mocy czynnej.

Najprostsza zasada wyboru w oparciu o wskaźnik ten jest następująca: maksymalna moc wyjściowa zasilacza UPS w woltoamperach musi być co najmniej 1,7 razy większa niż całkowita moc obciążenia w watach. Istnieją również bardziej szczegółowe wzory obliczeniowe, które uwzględniają specyfikę różnych rodzajów obciążenia; można je znaleźć w dedykowanych źródłach. Jeśli chodzi o konkretne wartości, najskromniejsze współczesne zasilacze UPS wytwarzają 700 - 1000 VA, a nawet mniej - to wystarc...za do zasilania komputera o średniej wydajności; a w najbardziej zaawansowanych modelach wskaźnik ten może wynosić 8–10 kVA i więcej.

Nominalna moc wyjściowa

Moc skuteczna UPS to w rzeczywistości maksymalna moc czynna obciążenia, które można podłączyć do urządzenia.

Moc czynna jest zużywana bezpośrednio na pracę urządzenia; jest określana w watach. Pomimo niej, większość urządzeń prądu przemiennego pobiera również moc bierną, która daremnie (relatywnie rzecz biorąc) jest zużywana przez cewki i kondensatory. Całkowita moc (wyrażona w woltoamperach) jest akurat sumą mocy czynnej oraz biernej; to właśnie tę cechę należy wykorzystywać do dokładnych obliczeń elektrotechnicznych. Zobacz „Maksymalna moc wyjściowa”, aby uzyskać szczegółowe informacje; tutaj zauważamy, że wybierając UPS do stosunkowo prostego zastosowania, całkiem możliwe jest posługiwanie się tylko samą mocą efektywną. Jest to co najmniej łatwiejsze niż przeliczanie watów, zadeklarowanych w charakterystyce podłączonych urządzeń na woltampery pełnej mocy.

Najskromniejsze współczesne zasilacze UPS wytwarzają nie więcej niż 500 W. 501 - 1000 W można uznać za wartość średnią, 1,1 - 2 kW -powyżej średniej, a w najmocniejszych modelach wskaźnik ten przekracza 2 kW i może osiągać bardzo imponujące wartości (do 1000 kW lub więcej w poszczególnych UPS klasy przemysłowej).

Dokładność napięcia wyjściowego

Parametr ten charakteryzuje stopień różnicy między napięciem przemiennym na wyjściu UPS a napięciem idealnym, którego wykres ma postać prawidłowej sinusoidy. Idealne napięcie jest tak nazywane, ponieważ jest najbardziej równomierne i powoduje najmniej niepotrzebnego obciążenia podłączonych urządzeń. Zniekształcenie napięcia wyjściowego jest więc jednym z najważniejszych parametrów określających jakość odbieranego przez obciążenie zasilania. Poziom zniekształceń 0% oznacza, że UPS dostarcza idealną sinusoidę, do 5% - niewielkie zniekształcenia sinusoidy, do 18% - silne zniekształcenia, od 18% do 40% - sygnał trapezopodobny, ponad 40% - sygnał prostokątny.

Podłączenie baterii do UPS

Napięcie znamionowe baterii zewnętrznych, które mogą być zastosowane w zasilaczu UPS.

Więcej szczegółów na temat takich baterii patrz „ Podłączenie akumulatora zewnętrznego ”, lecz tutaj warto powiedzieć, że napięcie akumulatora zewnętrznego musi odpowiadać napięciu, dla którego zaprojektowane jest zasilanie awaryjne. Jeśli te parametry różnią się - w najlepszym przypadku UPS po prostu nie uruchomi się, a w najgorszym możliwe są przeciążenia, a nawet pożar.

Ogólnie rzecz biorąc, im mocniejszy zasilacz UPS, tym wyższe napięcie baterii zewnętrznych, dla których jest przeznaczony. Nie ma tu jednak sztywnej zależności. Niektóre modele dopuszczają nawet kilka wariantów napięcia, na przykład 96/108/120 V. Należy również pamiętać, że ogniwo zasilające o wymaganym napięciu można złożyć z kilku baterii o mniejszej liczbie woltów połączonych szeregowo: na przykład dla 36 V , możesz użyć 3 akumulatora po 12 V.

Osobno należy podkreślić, że standardowe napięcia dla większości współczesnych zasilaczy awaryjnych to wielokrotności 12 V, jednak w takich urządzeniach nie można stosować akumulatorów samochodowych. Pomimo identycznego napięcia, takie akumulatory są zaprojektowane do zasadniczo innego formatu pracy, a ich zastosowanie w UPS jest w najlepszym przypadku obarczone nieprawidłową obsługą urządzenia, w najgorszym - pożarami, a nawet wybuchami.

Min. prąd ładowania

Najniższa wartość prądu w amperach, przy której akumulator UPS może być efektywnie ładowany. Należy pamiętać, że ładowanie niskim prądem jest uważane za delikatniejsze i wydłuża żywotność akumulatora, ale zwiększa to czas trwania procesu ładowania. Optymalny prąd ładowania wynosi około 10% pojemności akumulatora.

Zabezpieczenia

Funkcje zabezpieczające przewidziane w konstrukcji zasilacza UPS.

Zabezpieczenie przed zwarciem. Zwarcie to gwałtowny spadek rezystancji obciążenia do krytycznie małych wartości, przez co zwiększa się natężenie prądu i zasilacz UPS doświadcza znacznych przeciążeń, które mogą uszkodzić urządzenie, a nawet spowodować pożar. Może to być spowodowane awarią podłączonego urządzenia, słabą izolacją, ciałami obcymi itp. W takiej sytuacji system przeciwzwarciowy wyłącza UPS, zapobiegając nieprzyjemnym konsekwencjom.

Zabezpieczenie przed przeciążeniem. Przeciążenie w danym przypadku nazywane jest nadwyżką poboru mocy obciążenia nad mocą wyjściową UPS. Praca w tym trybie może również prowadzić do nieprzyjemnych konsekwencji, aż do awarii i pożaru; aby tego uniknąć, zainstalowany jest system zabezpieczający, który wyłącza UPS w przypadku przeciążenia.

Zabezpieczenie przed przeładowaniem akumulatora zewnętrznego. Funkcja zabezpieczająca przed przeładowaniem zapobiega gromadzeniu się nadmiaru energii w akumulatorze, z którego UPS pracuje w trybie autonomicznym. Przeładowanie jest wysoce niepożądane w przypadku każdego rodzaju akumulatora. Może to prowadzić do różnych nieprzyjemnych konsekwencji — od pogorszenia wydajności po przegrzanie i pożar akumulatora. Zabezpieczenia znajdujące się w zasilaczu UPS odcinają zasilanie po całkowitym naładowaniu akumulat...ora. Zapobiega to przedostawaniu się „dodatkowego” prądu do akumulatora, co mogłoby go uszkodzić. Jest to wygodne, gdyż akumulator można pozostawić na ładowaniu przez długi czas bez obawy o jego przeładowanie.

Filtracja zakłóceń. System, który tłumi zakłócenia o wysokiej częstotliwości w sieci elektrycznej - mogą to być zarówno pojedyncze skoki napięcia podczas włączania i wyłączania potężnych urządzeń elektrycznych, jak i długotrwałe zakłócenia ze stałych źródeł, takich jak silniki elektryczne. Zakłócenia te mogą niekorzystnie wpłynąć na działanie elektroniki podłączonej do sieci (aż do widocznych usterek); System filtrowania pozwala temu zapobiec. Takie systemy są dość proste, dlatego jest w nie wyposażana większość współczesnych zasilaczy UPS.

— Ochrona linii transmisji danych. System ochrony przed zakłóceniami o wysokiej częstotliwości, podobny do filtrowania zakłóceń (patrz wyżej) - stosowany zaś nie w sieci elektrycznej, tylko w sieci telefonicznej lub przewodowej sieci komputerowej (LAN). Takie sieci są również podatne na zakłócenia pochodzące z różnych źródeł promieniowania elektromagnetycznego, które mogą powodować nieprawidłowe działanie podłączonych do nich urządzeń: komputerów PC, drukarek, faksów itp. Zasilacze UPS z tą funkcją mają co najmniej dwa złącza LAN (wejście i wyjście), które umożliwiają podłączenie odpowiednich kabli sieciowych lub telefonicznych (LAN zgodnych z RJ-11).

— Złącze wyłączania awaryjnego. To złącze umożliwia podłączenie zasilacza UPS do systemu awaryjnego wyłączania. Tak więc, w sytuacji awaryjnej (na przykład w przypadku pożaru) całe pomieszczenie, w tym z rezerwą zasilania, może być całkowicie odłączone od zasilania poprzez wciśnięcie jednego przycisku. Bez tego zasilacz UPS po prostu przełączyłby się na akumulator podczas przerwy w dostawie prądu i pozostawiłby sprzęt pod napięciem, co mogłoby prowadzić do katastrofalnych konsekwencji.

— Alarm dźwiękowy. System, który emituje sygnały dźwiękowe w różnych ważnych sytuacjach. Najczęściej służy do zgłaszania awarii zasilania i przełączania UPS na zasilanie bateryjne. Bez sygnału dźwiękowego w ogóle nie dałoby się tego zauważyć (światło w pomieszczeniu nie zawsze jest włączone i gaśnie w przypadku awarii sieci, może zniknąć prąd w samym gniazdku itp.), co jest obarczone nagłym wyłączeniem sprzętu, utratą danych i awariami. Alarm dźwiękowy może być również używany do innych zdarzeń - niski poziom naładowania baterii, koniec ładowania, włączenie/wyłączenie bypassu itp.

Uchwyt do przenoszenia

Obecność uchwytu na obudowie UPS, co ułatwia ręczne przenoszenie urządzenia. Najczęściej przenośne stacje zasilania wyposażone są we wbudowany uchwyt, którego istotą jest mobilne korzystanie ze sprzętu.
Logicpower LPY-B-PSW-1500VA Plus często porównują
Logicpower LPY-PSW-800VA Plus często porównują