Charakterystyka wyświetlacza
Specyfikacja głównego (i najczęściej jedynego) wyświetlacza w urządzeniu.
Oprócz podstawowych parametrów - takich jak przekątna, rozdzielczość (ze względu na nią ekrany są umownie podzielone na
HD,
Full HD, href="/list/122/pr-49321/">2K i więcej), typ matrycy (najczęściej
IPS,
OLED,
AMOLED,
Super AMOLED,
Dynamic AMOLED,), na tej liście mogą być podawane bardziej konkretne cechy. Wśród nich - kształt powierzchni (
płaska lub
zakrzywiona), obecność i wersja
Gorilla Glass (w tym najpopularniejsza
v6 a> i Victus), obsługa
HDR i częstotliwość odświeżania (częstotliwość wyższa niż
60 Hz jest uważana za
wysoką, mianowicie
90 Hz,
120 Hz i
144 Hz). Oto bardziej szczegółowy opis specyfikacji, które są istotne dla współczesnych wyświetlaczy:
— Przekątna. Tradycyjnie przekątna ekranu jest podawana w calach. Większy wyświetlacz jest wygodniejszy w obsłudze: pomieszczą więcej in
...formacji, a sam obraz jest lepiej czytelny. Minusem dużej przekątnej jest zwiększenie wymiarów urządzenia. Obecnie smartfony z ekranami 5" i mniejszymi są uważane za małe>. 5.6 – 6" i do 6.5" - to już jest średni format. Poza tym sporo modeli ma rozmiar 6.5". Klasyczne telefony bez ekranów dotykowych nie potrzebują dużej przekątnej - zwykle nie przekracza ona 3".
— Rozdzielczość. Rozdzielczość ekranu określają jego wymiary (w pionie i poziomie) w pikselach. Im większe są te wymiary (przy tej samej przekątnej), tym bardziej szczegółowy i wygładzony jest obraz, tym mniej widoczne są poszczególne piksele. Z drugiej strony zwiększenie rozdzielczości wpływa zarówno na koszt samego wyświetlacza, jak i wymagania sprzętowe telefonu. Warto też zauważyć, że ta sama rozdzielczość wygląda inaczej na ekranach o różnych rozmiarach; dlatego przy ocenie szczegółowości warto wziąć pod uwagę nie tylko parametr ten, lecz także ilość PPI (patrz poniżej).
— PPI. Zagęszczenie pikseli na ekranie urządzenia. Określa się na podstawie liczby punktów na cal (points per inch) - liczby pikseli na każdy poziomy lub pionowy odcinek o rozmiarze 1". Wskaźnik ten zależy jednocześnie od przekątnej i rozdzielczości, lecz ostatecznie jest to liczba PPI, która określa, jak wygładzony i szczegółowy jest obraz na wyświetlaczu. Dla porównania należy zaznaczyć, że w odległości około 25-30 cm od oczu zagęszczenie 300 PPI lub większe sprawia, że poszczególne piksele są prawie niewidoczne dla osoby z normalnym wzrokiem, obraz jest postrzegany jako całościowy, przy większych odległościach podobny efekt jest zauważalny nawet przy mniejszym zagęszczeniu pikseli.
— Typ matrycy. Technologia, według której wykonana jest matryca ekranu. Parametr ten jest określa się tylko dla stosunkowo zaawansowanych wyświetlaczy, które przewyższają najprostsze ekrany LCD telefonów przyciskowych. Najbardziej rozpowszechnione w naszych czasach są następujące typy matryc:
- IPS. Najbardziej popularna technologia, stosowana w ekranach współczesnych smartfonów. Zapewnia bardzo przyzwoitą jakość obrazu, kąty widzenia oraz czas reakcji, choć pod względem tych parametrów nieco ustępuje bardziej zaawansowanym wariantom (patrz poniżej). Z drugiej strony IPS ma również swoje zalety: trwałość, równomierne zużycie, a także dość niski koszt. Dzięki temu takie ekrany można spotkać we wszystkich kategoriach smartfonów - od niedrogich po topowe.
- AMOLED. Technologia oparta na organicznych diodach elektroluminescencyjnych (OLED) opracowana przez firmę Samsung. Jedną z kluczowych różnic między takimi matrycami a bardziej tradycyjnymi wyświetlaczami jest to, że nie wymagają one zewnętrznego podświetlenia: każdy piksel sam jest źródłem światła. Z tego powodu zużycie energii takiego ekranu zależy od cech wyświetlanego obrazu, lecz generalnie okazuje się dość niskie. Ponadto matryce AMOLED wyróżniają się szerokimi kątami widzenia, doskonałymi wskaźnikami jasności i kontrastu, wysoką jakością kolorów oraz krótkim czasem reakcji. Dzięki temu takie ekrany nadal są wykorzystywane we współczesnych smartfonach, pomimo pojawienia się bardziej zaawansowanych technologii; można je spotkać nawet w topowych modelach. Główną wadą tej technologii jest stosunkowo wysoki koszt i nierównomierne zużycie pikseli: piksele, które pracują dłużej i częściej przy dużej jasności - wypalają się szybciej. Zwykle jednak efekt ten staje się zauważalny dopiero po kilku latach intensywnego użytkowania - okresie porównywalnym z żywotnością samego smartfona.
- AMOLED (LTPO). Zaawansowana wersja paneli AMOLED z możliwością dynamicznego dostosowywania częstotliwości odświeżania w zależności od wykonywanych zadań. Skrót LTPO (Low Temperature Polycrystalline Oxid) oznacza „niskotemperaturowy tlenek polikrystaliczny”. Za tym terminem kryje się połączenie tradycyjnej technologii LTPS i cienkiej warstwy tlenku TFT z dodatkiem hybrydowo-tlenkowego krzemu polikrystalicznego do sterowania obwodami przełączającymi. Panele AMOLED (LTPO) zmniejszają zużycie energii przez gadżet o rząd wielkości. Tak więc przy wykonywaniu aktywnych czynności ekran urządzenia stosuje maksymalną lub wysoką częstotliwość odświeżania, a przy przeglądaniu zdjęć lub czytaniu tekstu wyświetlacz zmniejsza częstotliwość odświeżania do minimum.
- Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED. Jednym z kluczowych ulepszeń jest to, że ekrany Super AMOLED nie mają szczeliny powietrznej między warstwą czujnika a znajdującym się poniżej wyświetlaczem. Umożliwiło to dalsze zwiększenie jasności i jakości obrazu, zwiększenie szybkości i niezawodności czujnika, a jednocześnie zmniejszenie zużycia energii. Wady takich matryc są takie same jak w przypadku oryginalnych AMOLED-ów. Ogólnie są one dość rozpowszechnione; większość smartfonów z podobnymi ekranami należy do średniej i najwyższej półki, lecz są też spotykane niedrogie modele.
- OLED. Różnorodne typy matryc, oparte na wykorzystaniu organicznych diod LED; w rzeczywistości - są to analogi AMOLED i Super AMOLED, produkowane nie przez Samsunga, lecz przez inne firmy. Konkretne cechy takich ekranów może się różnić, natomiast większość z nich z jednej strony jest droższa od popularnych IPS, z drugiej zapewnia wyższą jakość obrazu (m.in. jasność, kontrast, kąty widzenia i odwzorowanie kolorów), gdyż również zużywają mniej energii i mają małą grubość. Głównymi wadami ekranów OLED są wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy wyświetlaniu statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (panel powiadomień, przyciski ekranowe itp.).
- OLED (polimerowy). Ekrany oparte na organicznych diodach elektroluminescencyjnych (OLED), w których dla podstawy nie używa się szkła, tylko przezroczysty materiał polimerowy. Podkreślmy, że chodzi o podstawę matrycy; od góry pokryta jest ona tym samym szkłem, co w innych typach wyświetlaczy. Tak czy inaczej, taka konstrukcja oferuje kilka zalet w porównaniu z tradycyjnymi matrycami „szklanymi”: zapewnia dodatkową odporność na uderzenia i doskonale nadaje się do tworzenia zakrzywionych wyświetlaczy. Z drugiej strony, pod względem właściwości optycznych, tworzywo sztuczne jest gorsze od szkła; zatem ekrany tego typu często ustępują jakością obrazu swoim „rówieśnikom”, wykonanym w tradycyjnej technologii OLED, a przy podobnej jakości obrazu są znacznie droższe.
- OLED (LTPO). Matryce OLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. W grach ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do wartości maksymalnych, zaś przy oglądaniu statycznych obrazów obniżają ją do minimum (od 1 Hz). Sercem tej technologii jest tradycyjne podłoże LTPS z cienką warstwą TFT nad podstawą tranzystorów cienkowarstwowych. Możliwość kontrolowania przepływu elektronów zapewnia dynamiczną kontrolę nad częstotliwością odświeżania. Przewagą konkurencyjną OLED (LTPO) jest zmniejszone zużycie energii.
Ponadto ekrany we współczesnych smartfonach mogą być wykonywane przy użyciu następujących technologii:
- PLS. Odmiana technologii IPS stworzona przez firmę Samsung. Pod pewnymi względami - w szczególności pod względem jasności, kontrastu i kątów widzenia - przewyższa oryginał, a jednocześnie jest tańsza w produkcji i pozwala tworzyć elastyczne wyświetlacze. Jednak z wielu powodów ta technologia nie zyskała zbyt dużej popularności.
- Super AMOLED Plus. Dalszy rozwój opisanej powyżej technologii Super AMOLED. Pozwala tworzyć jeszcze jaśniejsze, bardziej kontrastowe, a jednocześnie cieńsze i energooszczędne ekrany. Jednak najczęściej te ekrany są obecnie nazywane po prostu „Super AMOLED”, bez przedrostka „Plus”.
- Dynamiczny AMOLED. Kolejne ulepszenie AMOLED wprowadzone w 2019 roku. Głównymi cechami takich matryc jest zwiększona jasność bez znaczącego wzrostu zużycia energii, a także 100% pokrycie przestrzeni barwnej DCI-P3 oraz kompatybilność z HDR10+; szczególnie dwa ostatnie szczegóły pozwalają na najwyższą jakość odtwarzania współczesnych filmów wysokobudżetowych na takich ekranach. Główną wadą Dynamic AMOLED jest wysoka cena; więc takie matryce spotyka się głównie w topowych modelach.
- Super Clear TFT. Wspólne opracowanie Samsunga i Sony, które pojawiło się jako wymuszona alternatywa dla matryc Super AMOLED (zapotrzebowanie na nie kiedyś znacznie przekraczało możliwości produkcyjne). Co prawda jakość obrazu Super Clear TFT jest nieco niższa - lecz w produkcji takie matryce są znacznie prostsze i tańsze, a pod względem właściwości wciąż przewyższają większość ekranów IPS. Jednak w naszych czasach technologia ta jest rzadko używana, ustępując AMOLED-owi w różnych wersjach.
- Super LCD. Kolejna alternatywa dla różnych typów technologii AMOLED; stosowana głównie w smartfonach HTC. Podobnie jak Super AMOLED, takie ekrany nie mają dodatkowej szczeliny powietrznej, co wpływa pozytywnie zarówno na jakość obrazu, jak i na dokładność sensora. Istotną zaletą Super LCD jest jego dobra energooszczędność, zwłaszcza przy wyświetlaniu jasnej bieli; lecz pod względem ogólnego nasycenia kolorów (w tym czerni) ta technologia jest zauważalnie gorsza od AMOLED.
- LTPS. Zaawansowany typ matryc TFT, stworzony w oparciu o tzw. niskotemperaturowy krzem polikrystaliczny. Umożliwia on łatwe tworzenie ekranów o bardzo dużym zagęszczeniu pikseli (ponad 500 PPI - patrz wyżej), osiągając wysokie rozdzielczości nawet przy niewielkiej przekątnej. Ponadto część elektroniki sterującej można osadzić bezpośrednio w matrycę, zmniejszając całkowitą grubość wyświetlacza. Główną wadą LTPS jest stosunkowo wysoki koszt, lecz w dzisiejszych czasach takie ekrany można spotkać nawet w niedrogich smartfonach.
- S-PureLED. Technologia stworzona przez firmę Sharp i używana głównie w jej smartfonach. Właściwie technologia samych matryc w tym przypadku nazywa się S-CG Silicon TFT, natomiast S-PureLED to nazwa specjalnej warstwy, używanej w celu zwiększenia przezroczystości. S-CG Silicon TFT jest pozycjonowane przez twórców jako modyfikacja opisanej powyżej technologii LTPS, która pozwala na dalsze zwiększenie rozdzielczości wyświetlacza i jednocześnie zgromadzenie w nim większej ilości elektroniki sterującej (aż do „procesora na szkle” ) bez zwiększania grubości. Oczywiście takie ekrany nie są tanie.
- E-Ink. Matryce oparte na tzw. „elektronicznym tuszu” - technologii upowszechnionej przede wszystkim w e-bookach. Główną cechą takiego ekranu jest to, że przy jego działaniu energia jest zużywana tylko na zmianę obrazu; nieruchomy obraz nie wymaga zasilania i może pozostać na wyświetlaczu nawet wtedy, gdy zasilania brak. Dodatkowo matryce E-Ink domyślnie nie świecą się same, a odbijają światło zewnętrzne - tak że podświetlenie własne nie jest obowiązkowe (choć można je stosować do pracy w półmroku i ciemności). Wszystko to zapewnia znaczne oszczędności energii; a dla niektórych użytkowników takie ekrany są czysto subiektywnie wygodniejsze i mniej męczące niż tradycyjne matryce. Z drugiej strony technologia E-Ink ma również poważne wady - przede wszystkim długi czas reakcji, a także złożoność i wysoki koszt kolorowych wyświetlaczy w połączeniu z niską jakością kolorów na nich. W świetle tego, takie matryce stały się bardzo rzadkim i egzotycznym wariantem, prawie nie spotykanym w dzisiejszych smartfonach.
— Częstotliwość odświeżania. Maksymalna częstotliwość odświeżania wyświetlacza, innymi słowy, najwyższa częstotliwość odświeżania, którą może on efektywnie odtworzyć. Im wyższy wskaźnik ten - tym wygładzony i płynny jest obraz, tym mniej zauważalny jest „efekt pokazu slajdów” i rozmycie obiektów przy poruszaniu się na ekranie. Jednocześnie należy pamiętać, że częstotliwość odświeżania 60 Hz, obsługiwana przez prawie każdy współczesny smartfon, jest w zupełności wystarczająca do większości zadań; nawet filmiki w wysokiej rozdzielczości obecnie prawie nie używają dużej liczby klatek na sekundę. Dlatego częstotliwość odświeżania w naszym katalogu jest specjalnie określana głównie dla ekranów zdolnych zapewnić więcej niż 60 Hz (w niektórych modelach - do 240 Hz). Tak wysoka częstotliwość może być przydatna w grach i niektórych innych zadaniach, poprawia też ogólne wrażenia z systemu operacyjnego i interfejsu aplikacji - ruchome elementy w takich interfejsach poruszają się płynnie i bez rozmycia.
— HDR. Technologia, która rozszerza dynamiczny zakres ekranu. W danym przypadku chodzi o zakres jasności - innymi słowy obecność HDR pozwala na wyświetlenie na ekranie jaśniejszej bieli i ciemniejszej czerni niż na wyświetlaczach bez tej technologii. W praktyce daje to zauważalną poprawę jakości obrazu: poprawia się nasycenie i niezawodność odwzorowania kolorów, a detale w bardzo jasnych lub bardzo ciemnych częściach kadru nie „toną” w bieli lub czerni. Jednak wszystkie te korzyści stają się zauważalne tylko wtedy, gdy odtwarzana treść była oryginalnie nagrana w HDR. Obecnie stosuje się kilka odmian tej technologii, oto ich cechy:
- HDR10. Historycznie pierwszy z konsumenckich formatów HDR, jest dziś niezwykle popularny: w szczególności jest obsługiwany przez prawie wszystkie serwisy przesyłania strumieniowego z treścią HDR i jest używany jako standard dla takich treści na dyskach Blu-ray. Zapewnia 10-bitową głębię kolorów (ponad miliard odcieni). Jednocześnie urządzenia z tą technologią mogą również odtwarzać treści HDR10 + (patrz poniżej) - chyba że ich jakość będzie ograniczona możliwościami oryginalnego HDR10.
- HDR10+. Ulepszona wersja HDR10. Przy tej samej głębi koloru (10 bitów) wykorzystuje tzw. dynamiczne metadane, które pozwalają na przekazywanie informacji o głębi koloru nie tylko dla grup po kilka klatek, lecz także dla pojedynczych klatek. Zapewnia to dodatkową poprawę reprodukcji kolorów.
- Dolby Vision. Zaawansowany standard używany szczególnie w kinematografii profesjonalnej. Pozwala na osiągnięcie 12-bitowej głębi kolorów (prawie 69 miliardów odcieni), wykorzystuje wspomniane wyżej dynamiczne metadane, a także umożliwia przesyłanie dwóch wersji obrazu jednocześnie w jednym strumieniu wideo - HDR i normalnym (SDR). Jednocześnie Dolby Vision bazuje na tej samej technologii co HDR10, więc we współczesnym sprzęcie format ten często łączy się z HDR10 czy HDR10+.
— Obsługa DC Dimming. Dosłownie z angielskiego, Direct Current Dimming jest tłumaczone jako ściemnianie prądem stałym. Technologia ta ma na celu zminimalizowanie migotania w ekranach OLED i AMOLED, co z kolei odciąża aparat wzrokowy użytkownika i chroni wzrok. Efekt „bez migotania” uzyskuje się poprzez bezpośrednie sterowanie jasnością podświetlanych diod LED poprzez zmianę wielkości podawanego do nich napięcia. Dzięki temu zapewnione jest zmniejszenie intensywności świecenia ekranu.
— Zakrzywiony ekran. Ekran z zagiętymi krawędziami, na które wchodzi wyświetlany obraz. Innymi słowy, w danym przypadku zakrzywione jest nie tylko szkło, lecz także część aktywnej matrycy. Wyświetlacze, w których obie krawędzie są zakrzywione, nazywane są „szkłem 2.5D”; istnieją też urządzenia, w których ekran jest zagięty tylko z jednej strony. W każdym razie ta cecha szczególna nadaje smartfonowi ciekawy wygląd i poprawia widoczność obrazu przy patrzeniu z określonych kątów, jednak znacząco wpływa to na koszt i może powodować niedogodności przy trzymaniu (zwłaszcza bez etui). Dlatego przed zakupem modelu z takim wyposażeniem najlepiej potrzymać urządzenie w dłoni i upewnić się, że jest ono wystarczająco wygodne.
— Gorilla Glass. Specjalne wytrzymałe szkło, stosowane jako pokrycie ochronne wyświetlacza. Charakteryzuje się wysoką wytrzymałością i odpornością na zarysowania, pod względem tych wskaźników wielokrotnie przewyższa zwykłe szkło. Jest szeroko stosowane w smartfonach, w których duże rozmiary ekranu stawiają zwiększone wymagania niezawodności pokrycia. Różne wersje tego szkła można spotkać we współczesnych telefonach, oto cechy różnych wariantów:
- Gorilla Glass v3. Najstarsza z aktualnych wersji - wydana w roku 2013; obecnie występuje głównie w stosunkowo niedrogich lub przestarzałych urządzeniach. Niemniej jednak pokrycie to ma niewątpliwe zalety: jest to pierwsza generacja Gorilla Glass, w której twórcy położyli zauważalny nacisk na odporność na zarysowania od kluczy, monet i innych przedmiotów, z którymi telefon może „zderzyć się” w kieszeni lub torbie. Pod tym względem wersja 3 pozostawała bezkonkurencyjna aż do wydania Gorilla Glass Victus w 2020 roku.
- Gorilla Glass v4. Wersja wydana w 2014 roku. Kluczową cechą przy opracowywaniu tego pokrycia stał się nacisk na odporność na uderzenia (podczas gdy poprzednie generacje skupiały się głównie na odporności na zarysowania). W efekcie szkło jest dwukrotnie mocniejsze niż w wersji 3, a jego grubość wynosi zaledwie 0,4 mm. Natomiast odporność na zarysowania, w porównaniu do swojego poprzednika, nieznacznie spadła.
- Gorilla Glass v5. Udoskonalenie "goryla", wprowadzone w 2016 roku w celu dalszego zwiększenia odporności na uderzenia. Według twórców, szkło wersji v5 okazało się 1,8 razy mocniejsze od poprzednika, pozostało nienaruszone w 80% upadków z wysokości 1,6 m „twarzą w dół” na chropowatą powierzchnię (i gwarantowana odporność na uderzenia 1,2 m). Odporność na zarysowania również nieco się poprawiła, lecz ten materiał w dalszym ciągu nie spełnia wymagań v3.
- Gorilla Glass v6. Wersja wprowadzona w 2018 roku. W przypadku tego pokrycia deklaruje się 2-krotny wzrost wytrzymałości w porównaniu z poprzednikami, a także odporność na wielokrotne upadki na twardą powierzchnię (w testach szkło v6 z powodzeniem wytrzymało 15 upadków z wysokości 1 m). Maksymalna wysokość upadku (pojedynczego) z gwarantowanym zachowaniem stanu jest deklarowana na poziomie 1,6 m. Nie mniej jednak odporność na zarysowania nie została ulepszona.
- Gorilla Glass 7. Oryginalna nazwa Gorilla Glass Victus - patrz poniżej.
- Gorilla Glass Victus. Następca Gorilla Glass 6, wydany latem 2020 roku. W tym wydaniu twórcy zwrócili uwagę nie tylko na zwiększenie ogólnej wytrzymałości, lecz także na poprawę odporności na zarysowania. Pod względem tego ostatniego wskaźnika Victus przewyższa nawet wersję v3, nie wspominając o bardziej wrażliwych materiałach (a w porównaniu z v6 zadeklarowano dwukrotne zwiększenie odporności na zarysowania). Jeśli chodzi o wytrzymałość, pozwala wytrzymać pojedyncze upadki z wysokości do 2 m, a także do 20 kolejnych upadków z wysokości 1 m.
System operacyjny
Przez termin „system operacyjny” w danym przypadku rozumie się wszystkie rodzaje oprogramowania układowego - zarówno pełnowartościowe systemy operacyjne pokroju iOS i Android, używane w smartfonach, jak i nakładki programowe zwykłych telefonów (innych niż smartfony). Główna różnica między tymi dwiema kategoriami polega na tym, że pełnowartościowy system operacyjny początkowo posiada bardziej rozbudowaną funkcjonalność, a także umożliwia instalowanie i odinstalowywanie różnych aplikacji - od gier i klientów sieci społecznościowych po specjalistyczne narzędzia, takie jak edytory zdjęć i wideo.
Wśród współczesnych smartfonów najbardziej rozpowszechnione są dwa systemy operacyjne -
Android i
iOS. Oto bardziej szczegółowy opis każdego z nich:
— Android. Bezpłatny system operacyjny typu open source od Google. Używany przez prawie wszystkich współczesnych producentów z wyjątkiem Apple; jest prezentowany na rynku w wielu wersjach - w szczególności
10 Q,
10 Go Edition,
11 R,
11 Go Edition a>, Android 12,
Android 12 Go Edition,
Android 13,
Android 13 Go Edition,
Android 14,
Android 14 Go Edition..., Android 15. Warto wziąć pod uwagę, że w momencie premiery na urządzeniu może być zainstalowana jedna wersja systemu operacyjnego, natomiast w momencie sprzedaży może ona być już zaktualizowana do nowszej wersji. Funkcjonalnie ten system operacyjny wyróżnia się przede wszystkim pełnowartościową wielozadaniowością i obszernym zestawem dostępnych aplikacji - pod tym względem przewyższa iOS; z drugiej strony, ogólnie rzecz biorąc, jakość aplikacji na Androidzie jest nieco niższa ze względu na ich niskie wymagania. System Android jest ściśle zintegrowany z usługami Google - sklepem aplikacji i treści Google Play, pocztą Gmail, przechowywaniem w chmurze Dysk Google itp.; jednakże istnieją wyjątki od tej reguły. Zwróć uwagę, że najnowsze wersje tego systemu operacyjnego można spotkać na rynku zarówno w oryginalnej postaci, jak i w jednej z dwóch specyficznych edycji:
- - Go Edition. Modyfikacja Androida przeznaczona do niedrogich smartfonów ze „słabym” wypełnieniem. Zarówno sam system operacyjny, jak i standardowe aplikacje (Assistant, Gmail itp.) w tej edycji zostały przeprojektowane w taki sposób, aby zapewnić niezawodne działanie nawet przy niewielkiej mocy obliczeniowej. Ponadto programiści starali się w jak największym stopniu zachować funkcjonalność pełnowartościowego Androida - niemniej jednak niektóre specyficzne funkcje w Go Edition okazały się być niedostępne (na przykład standardowe mapy nie obsługują nawigacji zakręt po zakręcie).
- - HMS. Edycja Androida, używana w smartfonach Huawei. Ze względu na sankcje USA wobec Chin firma ta nie może w pełni współpracować z Google - w szczególności korzystać z usług Google (Google Mobile Services - GMS) w swoich smartfonach z systemem Android. Jako zamianę Google wprowadzono HMS - Huawei Mobile Services. Usługi te obejmują identyfikator użytkownika Huawei, AppGallery, markowe odpowiedniki podstawowych usług Google (asystent, przeglądarka, magazyn danych w chmurze, muzyka/wideo itp.) oraz narzędzia programistyczne dla deweloperów.
Jeśli chodzi o poszczególne wersje Androida, oto główne cechy które są istotne w naszych czasach:
- - Android 10. Wersja wydana we wrześniu 2019 roku. W tej wersji wprowadzono rozbudowany zestaw gestów pełnoekranowych (z możliwością optymalizacji w poszczególnych aplikacjach - w szczególności wyłączanie gestów na niektórych obszarach ekranu w celu uniknięcia konfliktów), tryb „ciemnego” ekranu na poziomie systemu, szereg ważnych aktualizacji bezpieczeństwa (w tym odrębny standard szyfrowania dla słabych urządzeń, które nie obsługują formatu AES na poziomie sprzętowym), pełne wsparcie łączności 5G oraz ulepszone możliwości pracy z rozszerzoną rzeczywistością. Ponadto wdrożono szereg rozwiązań optymalizujących wydajność składanych smartfonów z elastycznymi ekranami.
- - Android 11. Kolejna duża aktualizacja, wydana jesienią 2020 roku. Główne zmiany dotyczyły wiadomości i powiadomień. Tak więc, w powiadomieniach utworzono osobną sekcję „Rozmowy” dla wiadomości, a także pojawiła się możliwość wyświetlania różnych konserwacji w postaci „bąbelka” nad dowolną uruchomioną aplikacją (funkcja Bubbles). Rozszerzono funkcjonalność trybu „Nie przeszkadzać” - teraz można do niego dodać wyjątki dla poszczególnych konserwacji. Inne ważne nowości obejmują systemowe narzędzie do nagrywania wideo z ekranu, ujednolicone centrum sterowania komponentami inteligentnego domu, szybkie przełączanie między urządzeniami odtwarzającymi (głośnik telefonu, słuchawki bezprzewodowe, Smart TV itp.), wbudowana obsługa Android Auto, a także rozszerzone możliwości kontrolowania dostępu poszczególnych aplikacji do określonych danych.
- - Android 12. Popularny system operacyjny, wydany w 2021 roku. W 12. wersji drastycznym zmianom uległo wzornictwo. Nowo powstała koncepcja Material You opiera się na powściągliwych paletach kolorystycznych i minimalistycznych obiektach 2D z zaawansowaną animacją. Motyw systemowy dostosowuje się teraz do palety kolorystycznej tapety na pulpicie (funkcja Monet), a zamiast okrągłych ikon ustawień w panelu powiadomień zastosowano prostokątne płytki z zaokrąglonymi krawędziami. Projektanci przeprojektowali również system animacji przy przeglądaniu pulpitów, podłączaniu ładowarki itp. W smartfonach z systemem Android 12 zamiast dokładnej geolokalizacji można wybierać przybliżone informacje o lokalizacji, a na panelu powiadomień pojawiały się ikony, sygnalizujące włączenie aparatu lub mikrofonu przy korzystaniu z niektórych aplikacji. Opcja Privacy Dashboard pokazuje informacje o tym, które aplikacje mają dostęp do aparatu i mikrofonu. Chip NFC na wyposażeniu urządzeń mobilnych może odtąd pełnić funkcję wirtualnego kluczyka do samochodu (Car Key). Kolejną ulepszeniem w systemie jest opcja wywołania Asystenta Google przez długie naciśnięcie przycisku zasilania smartfona.
- - Android 13. Popularny system operacyjny dla urządzeń mobilnych, 13. wersja którego została wydana w 2022 roku. Android 13 nie zaznał poważnych zmian, jednakże w systemie zaimplementowano szereg przydatnych funkcji i usprawnień. W szczególności interfejs Material You może wybierać podstawowe kolory z zainstalowanych tapet i stosować je do wyświetlania ikonek w całym systemie. Prywatność danych użytkowników weszła na nowy poziom — w Androidzie 13 możesz konfigurować poszczególne uprawnienia i wybierać obrazy z Galerii, do których aplikacja ma dostęp. Dla każdej aplikacji użytkownik może wybrać standardowy język interfejsu. System stał się także bardziej energooszczędny, udoskonalono schowek danych i skaner kodów kreskowych.
- - Android 13 Go. "Odchudzona" wersja systemu operacyjnego Android 13, dedykowana do instalacji na smartfonach o małej mocy. Charakterystyczną cechą systemu operacyjnego jest obecność specjalnego algorytmu, który optymalizuje moc obliczeniową smartfona. Ponadto w systemie brakuje niektórych funkcji wymagających wydajnych podzespołów. W Android 13 Go zaprezentowano koncepcję interfejsu Material You, która pozwala dostosować kolorystykę menu do zainstalowanej tapety. Z pełnowartościowego systemu Android 13 wersja Go zapożyczyła funkcję nadawania aplikacjom uprawnień do wysyłania powiadomień oraz możliwość zmiany języka dla określonych aplikacji.
- - Android 14. System operacyjny dla urządzeń mobilnych, wydany w 2023 roku. W 14. wersji systemu operacyjnego Android wprowadzono niewiele zmian, a główny nacisk położono na elastyczną personalizację interfejsu. Wśród nowości należy wymienić funkcję wyświetlania powiadomień za pomocą lampy błyskowej lub wyświetlacza: dla każdej aplikacji można teraz ustawić schemat mrugania latarką, a w przypadku ekranu wybrać paletę kolorów powiadomień. Również w systemie operacyjnym zaimplementowano przydatną możliwość regulacji przechwytywania zrzutów ekranu, dodano widget wyświetlający stan naładowania baterii i wykaz aktywnych połączeń oraz wprowadzono opcję klonowania aplikacji. Czcionki systemowe w systemie operacyjnym można powiększyć aż do 200% standardowego rozmiaru, natomiast skalowanie realizowane jest nieliniowo – przede wszystkim wykorzystywane jest do małych tekstów. Poprawiono między innymi efektywność energetyczną systemu oraz wprowadzono kosmetyczne zmiany w interfejsie typu bardziej zaokrąglonych elementów.
— iOS. Własny system operacyjny firmy Apple, stosowany tylko w gadżetach tego producenta. Główne zalety iOS nad Androidem to przede wszystkim staranna optymalizacja pod kątem konkretnych urządzeń (co pozwala na uzyskanie dobrej wydajności przy stosunkowo niewielkiej ilości pamięci RAM), ogólna wygoda i bezpieczeństwo użytkowania oraz wysoka jakość aplikacji. Ponadto aktualizacje iOS są wydawane regularnie i dostępne dla wszystkich urządzeń (z wyjątkiem przestarzałych, które już nie radzą sobie z nowszymi wersjami systemu). Z drugiej strony system ten nie obsługuje wielozadaniowości i jest maksymalnie zamknięty dla użytkownika: w szczególności aplikacje można instalować tylko ze sklepu firmowego, nie ma dostępu do systemu plików, karty pamięci w zasadzie nie są obsługiwane.
— Harmony OS. Uniwersalny system operacyjny firmy Huawei, znany również jako Hongmeng. Zapewnia pracę szerokiej gamy urządzeń: sprzętu z ekosystemu „inteligentnego” domu, inteligentnych zegarków, smartfonów oraz tabletów. Harmony OS to swego rodzaju dodatek na Androida bez usług Google. Sklep z aplikacjami dla urządzeń Harmony OS nazywa się AppGallery.
— Flyme OS. Zmodyfikowana wersja systemu operacyjnego Android używana w smartfonach Meizu. Za stabilność systemu operacyjnego odpowiada silnik OneMind. W Flyme OS nie ma menu aplikacji — wszystkie ikony są rozrzucone po pulpitach. Cechy wyróżniające powłokę to zaawansowane narzędzia do pracy z plikami, asystent głosowy Aicy, elastyczna regulacja sygnału wibracyjnego mEngine, opcje kontroli rodzicielskiej Family Guardian, ustrukturyzowana galeria z wygodnym edytorem wizualnym.
— Prawnie zastrzeżony. Termin ten najczęściej oznacza bazowe oprogramowanie układowe, instalowane w zwykłym telefonie (nie smartfonie), z reguły - przyciskowym. Takie oprogramowanie ma skromniejszy zestaw wstępnie zainstalowanych aplikacji niż pełnowartościowy system operacyjny; w najlepszym przypadku zestaw ten można rozszerzyć o uniwersalne aplikacje mobilne oparte na Javie, a często dodatkowe aplikacje nie są w ogóle obsługiwane. Nie można tego jednak nazwać wadą, biorąc pod uwagę specyfikę stosowania tradycyjnych telefonów.
Należy nadmienić, że w sprzedaży można spotkać urządzenia z innymi systemami operacyjnymi, oprócz tych opisanych powyżej. W większości są to przestarzałe modele lub urządzenia z rzadkimi i nietypowymi rodzajami oprogramowania układowego.Model procesora
Obecnie największą popularnością cieszą się układy
Qualcomm i
MediaTek, procesory z
Unisoc są nieco mniej popularne. W przypadku Qualcomm można wyróżnić kilka procesorów z każdej serii, a mianowicie
Snapdragon 778G,
Snapdragon 7 Gen 1,
Snapdragon 7+ Gen 2,
Snapdragon 7s Gen 2,
Snapdragon 7 Gen 3,
Snapdragon 7+ Gen 3,
Snapdragon 865,
Snapdragon 870,
Snapdragon 888,
Snapdragon 8 Gen 1,
Snapdragon 8+ Gen 1,
Snapdragon 8 Gen 2,
Snapdragon 8 Gen 3,
Snapdragon 8s Gen 3. U Mediatek zaś jest to budżetowa seria
MediaTek Helio P i linię zaawansowanych chipsetów
MediaTek Dimensity (
Dimensity 1000,
Dimensity 8000,
Dimensity 9000) .
Znając nazwę modelu procesora (CPU) zainstalowanego w smartfonie, możesz znaleźć szczegółowe dane dotyczące konkretn
...ego procesora i ocenić jego poziom oraz ogólne możliwości. Jest to szczególnie aktualne w świetle faktu, że możliwości te zależą nie tylko od liczby rdzeni i szybkości zegara, lecz także od specyfiki konstrukcji.GPU
Model GPU zastosowany w telefonie komórkowym.
Ten moduł jest odpowiedzialny za wszystkie zadania związane z grafiką; w związku z tym jego cechy bezpośrednio wpływają na wydajność przetwarzania określonego obrazu. Jest to szczególnie widoczne na przykładzie „ciężkich” treści, takich jak nowoczesne gry 3D. Dlatego posiadanie wydajnej karty wideo jest szczególnie ważne w przypadku
smartfonów gamingowych. Znając model GPU, możesz znaleźć szczegółowe dane na jego temat i ocenić jego możliwości.
Pamięć wbudowana
Ilość pamięci wbudowanej zainstalowanej w telefonie; innymi słowy - pojemność własnej, niewymiennej pamięci masowej urządzenia.
Pojemność ta ma bezpośredni wpływ na to, ile danych można przechowywać w telefonie bez używania wymiennych kart pamięci. Wskaźnik ten jest szczególnie ważny w przypadku modeli
bez gniazd na karty. Jednak nawet jeśli obsługiwane są dyski wymienne, nadal preferowana jest pamięć wbudowana: przynajmniej działa szybciej i zwykle ma mniej ograniczeń użytkowania (w szczególności większość smartfonów umożliwia instalowanie aplikacji tylko na dysku niewymiennym).
Jeśli chodzi o konkretne pojemności, rzeczywiste minimum dla współczesnego smartfona to
32 GB; mniej pojemne urządzenia w naszych czasach spotyka się rzadziej.
64 GB to komfortowe minimum,
128 GB uważa się za średnią
256 GB — powyżej średniej. Niektóre zaawansowane urządzenia są wyposażone w pamięć
512 GB lub nawet
1 TB.
Należy zauważyć, że rzeczywista pojemność pamięci dostępnej dla użytkownika będzie nieuchronnie nieco mniejsza niż całkowita, ponieważ część pamięci zajmują pliki systemu operacyjnego.
Wyniki testów
Wyniki testów są podawane dla młodszego modelu w linii lub dla konkretnego modelu, co ma na celu lepsze zrozumienie wydajności modeli telefonów, jeśli porównujesz telefony według tych parametrów. Na przykład dla modelu 128 GB są wyniki testów, a dla modelu 256 GB nie ma informacji w sieci, w obu modelach zobaczysz tę samą wartość, co pozwoli zrozumieć ogólną wydajność urządzenia. Natomiast jeżeli redakcja dysponuje informacjami dla każdego poszczególnego modelu, to wyniki testów zostaną wpisane dla każdego modelu, a model z dużą ilością pamięci RAM będzie miał większe wartości.
AnTuTu Benchmark
Wynik pokazany przez urządzenie po przejściu testu wydajności (benchmarku) AnTuTu Benchmark.
AnTuTu Benchmark to kompleksowy test zaprojektowany specjalnie z myślą o urządzeniach mobilnych, przede wszystkim smartfonach i tabletach. Sprawdzając bierze pod uwagę wydajność procesora, pamięci, grafiki oraz układów wejścia/wyjścia, dając w ten sposób w miarę jasny obraz możliwości systemu. Im lepszy wynik, tym więcej punktów zostanie przyznanych na podstawie uzyskanych wyników. A
według rankingu AnTuTu smartfony, które osiągnęły ponad 900 tys. punktów, uznawane są za wysokowydajne.
Jak każdy benchmark, ten test nie zapewnia absolutnej dokładności: to samo urządzenie może pokazywać różne wyniki, zwykle z odchyleniami w granicach 5 – 7%. Odchylenia te zależą od wielu czynników niezwiązanych bezpośrednio z systemem - od obciążenia urządzenia programami innych firm po temperaturę powietrza podczas testów. O istotnej różnicy między obydwoma modelami możemy więc mówić tylko wtedy, gdy różnica w ich wskaźnikach wykracza poza wspomniany błąd.
Nagrywanie Full HD (1080p)
Rozdzielczość i maksymalna liczba klatek na sekundę, zapewniane przez główny aparat telefonu przy nagrywaniu wideo Full HD (1080p) z normalną szybkością, bez korzystania ze zwolnionego tempa (jeśli jest dostępne).
Standardowa rozdzielczość dla tego formatu to 1920x1080; istnieją inne warianty rozdzielczości, lecz w telefonach komórkowych jest ich brak. Zwróć uwagę, że może to być maksymalna rozdzielczość nagrywania lub jeden ze stosunkowo prostych wariantów, uzupełniający bardziej zaawansowane standardy (takie jak UltraHD 4K). Jednocześnie według współczesnych standardów Full HD uważane jest za coś więcej niż przyzwoitą rozdzielczość, a jednocześnie może być obsługiwane nawet przez dość proste i niedrogie smartfony.
Jeśli chodzi o liczbę klatek na sekundę, przy zwykłym nagrywaniu występują tak naprawdę dwie wartości - Full HD 30 kl./s i
Full HD 60 kl./s. Wyższa liczba klatek na sekundę pozwala uzyskać bardziej płynne wyświetlanie dynamicznych scen - nawet szybko poruszające się obiekty w kadrze są widoczne tak wyraźnie, jak to możliwe, prawie bez rozmycia. Jednak niska prędkość nagrywania ma też swoje zalety - pozwala na zmniejszenie pojemności nagranych materiałów. Dlatego w smartfonach obsługujących 60 kl./s może być przewidziana możliwość zmniejszenia prędkości klatek do 30 kl./s. Jednak prędkości powyżej 60 kl./s są stosowane do nagrywania filmów w zwolnionym tempie (slow-mo); aby uzyskać szczegółowe informacje, patr
...z „Zwolnione tempo (slow-mo)”.Komunikacja
Rodzaje komunikacji obsługiwane przez urządzenie pomimo sieci komórkowych.
Ta lista obejmuje dwa rodzaje specyfikacji. Pierwszy rodzaj to bezpośrednio technologie łączności: Wi-Fi (w tym zaawansowane standardy
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax),
Wi-Fi 6E (802.11ax),
Wi-Fi 7 (802.11be)),
Bluetooth (między innymi nowa generacja
Bluetooth v 5 w postaci
wersji 5.0,
5.1,
5.2,
5.3 i
5.4),
NFC,
łączność satelitarna. Druga odmiana to dodatkowe funkcje, zaimplementowane przez taki czy inny standard łączności: jest to przede wszystkim obsługa
aptX (w tym
aptX HD,
aptX Adaptive i
aptX Lossless), a nawet wbudowana krótkofalówka. Oto bardziej szczegółowy opis każdej z tych specyfikacji:
— Wi-Fi 4 (802.11n). Wi-Fi to technologia łączności bezprzewodowej, która we współczesnych telefonach może być stosowana zarówno do dostępu do Internetu przez bezprzewodowe punkty dostępowe, jak i do bezpośredniej
...komunikacji z innymi urządzeniami (w szczególności z aparatami i dronami). Połączenie Wi-Fi jest obowiązkowe dla smartfonów, natomiast jest ono niezwykle rzadkie w telefonach tradycyjnych. W szczególności Wi-Fi 4 (802.11n) zapewnia prędkość przesyłania danych do 600 MB/s i wykorzystuje dwa zakresy częstotliwości jednocześnie - 2,4 GHz i 5 GHz, dzięki czemu jest kompatybilne zarówno z wcześniejszymi standardami 802.11 b/g, jak i bardziej nowoczesnym Wi-Fi 5 (patrz poniżej). Obecnie Wi-Fi 4 uważa się za stosunkowo skromny standard, mimo to, że w dalszym ciągu wystarcza go do większości zadań.
— Wi-Fi 5 (802.11ac). Standard Wi-Fi (patrz powyżej), który jest następcą Wi-Fi 4. Teoretycznie obsługuje prędkości do 6,77 Gb/s, a także wykorzystuje
zakres 5 GHz - jest mniej obciążony obcymi sygnałami i jest bardziej odporny na zakłócenia aniżeli tradycyjny zakres 2,4 GHz. Ze względów kompatybilności smartfon z modułem Wi-Fi 5 może obsługiwać wcześniejsze standardy, lecz nie zaszkodzi to wyjaśnić osobno.
— WiGig (802.11ad). Następny, po Wi-Fi 5, rozwinięcie standardów Wi-Fi, wyróżniający się przede wszystkim wykorzystaniem zakresu 60 GHz. Pod względem prędkości maksymalnej właściwie nie różni się od Wi-Fi 5, jednak wyższa częstotliwość zwiększa przepustowość kanału, przez co gdy kilka gadżetów komunikuje się z jednym wspólnym urządzeniem (np. routerem), prędkość łączności nie spada tak mocno, jak we wcześniejszych standardach. Z drugiej strony sygnał 802.11ad prawie nie jest w stanie przechodzić przez ściany; producenci stosują różne sztuczki aby zrekompensować tę wadę, lecz najlepszą jakość łączności nadal uzyskuje się tylko na linii wzroku. Jak na razie sprzętu do standardu WiGig nie jest za dużo, co więcej nie jest on kompatybilny z wcześniejszymi wersjami Wi-Fi; dlatego w smartfonach zazwyczaj przewiduje się wsparcie dla innych standardów.
— Wi-Fi 6 (802.11ax). Standard, opracowany jako bezpośrednie rozwinięcie i udoskonalenie Wi-Fi 5. Wykorzystuje zakresy od 1 do 7 GHz - to znaczy jest zdolny do pracy na standardowych częstotliwościach 2,4 GHz i 5 GHz (w tym ze sprzętem wcześniejszych standardów) oraz w innych pasmach częstotliwości. Maksymalna prędkość przesyłu danych wzrosła do 10 Gb/s, natomiast główną zaletą Wi-Fi 6 jest dalsza optymalizacja jednoczesnej pracy kilku urządzeń na tym samym kanale (poprawa rozwiązań technicznych, zastosowanych w Wi-Fi 5 i WiGig). To sprawia, że Wi-Fi 6 zapewnia najmniejszy spadek przepustowości na tle innych współczesnych standardów.
— Wi-Fi 6E (802.11ax). Standard Wi-Fi 6E jest technicznie nazywany 802.11ax. Natomiast w przeciwieństwie do standardowego Wi-Fi 6 (więcej szczegółów podano w odpowiednim punkcie), które nosi podobną nazwę oraz zapewnia działanie w nieobciążonym paśmie 6 GHz. Ogólnie standard wykorzystuje 14 różnych pasm częstotliwości, oferując wysoką przepustowość w najbardziej zatłoczonych miejscach z wieloma aktywnymi połączeniami. I jest wstecznie kompatybilny z poprzednimi wersjami.
— Wi-Fi 7 (802.11be). Technologia, podobnie jak poprzednia Wi-Fi 6E, potrafi pracować w trzech pasmach: 2.4 GHz, 5 GHz i 6 GHz. Dodatkowo w Wi-Fi 7 zwiększono maksymalną szerokość kanału ze 160 MHz do 320 MHz – im szerszy kanał, tym więcej danych może przesłać. Standard IEEE 802.11be wykorzystuje modulację 4096-QAM, co pozwala pomieścić większą liczbę symboli w jednostce transmisji danych. Wi-Fi 7 zapewnia maksymalną teoretyczną prędkość do 46 Gb/s. Jeżeli chodzi o wykorzystanie połączenia bezprzewodowego do streamingu i gier wideo, bardzo ciekawie prezentuje się wdrożona funkcja MLO (Multi-Link Operation). Za jej pomocą można agregować kilka kanałów w różnych zakresach, co znacznie zmniejsza opóźnienia w transmisji danych, zapewnia niski i stabilny ping. Do zminimalizowania opóźnienia w komunikacji, pod warunkiem, że podłączonych jest wiele urządzeń klienckich, zaimplementowano technologię Multi-RU (Multiple Resource Unit).
— Bluetooth. Technologia bezpośredniej łączności bezprzewodowej między różnymi urządzeniami. W telefonach komórkowych służy głównie do podłączania słuchawek, zestawów słuchawkowych i gadżetów naręcznych, takich jak bransoletki fitness, lecz dopuszczalne są również inne scenariusze zastosowania - tryb zdalnego sterowania, bezpośredni transfer plików itp. We współczesnych telefonach mogą występować różne wersje Bluetooth. Oto ich cechy:
- Bluetooth v 4.0. Zasadnicze odświeżenie (po wersji 3.0), które wprowadziło jeszcze jeden format przesyłania danych - Bluetooth z niskim zużyciem energii (LE). Protokół ten jest przeznaczony przede wszystkim do miniaturowych urządzeń, które przesyłają niewielkie ilości informacji, takich jak bransoletki fitness i czujniki medyczne. Bluetooth LE umożliwia znaczne oszczędzanie energii przy takim rodzaju łączności.
- Bluetooth v 4.1. Rozwinięcie i usprawnienie Bluetooth 4.0. Jednym z kluczowych usprawnień okazała się być optymalizacja współpracy z modułami łączności 4G LTE tak, aby Bluetooth i LTE nie kolidowały ze sobą. Dodatkowo w tej wersji stało się możliwe jednoczesne wykorzystanie urządzenia Bluetooth w kilku rolach - np. do zdalnego sterowania urządzeniem zewnętrznym przy jednoczesnym transmitowaniu muzyki do słuchawek.
- Bluetooth v 4.2. Dalsze, po 4.1, rozwinięcie standardu Bluetooth. Zasadniczych nowości nie zostało przedstawiono, natomiast standard otrzymał szereg ulepszeń dotyczących niezawodności i odporności na zakłócenia, a także ulepszoną kompatybilność z "Internetem rzeczy"
- Bluetooth v 5.0. Wersja zaprezentowana w roku 2016. Kluczowe nowości to dalsza rozbudowa możliwości związanych z „Internetem rzeczy”. W szczególności w protokole Bluetooth Low Energy (patrz powyżej) możliwe stało się podwojenie prędkości przesyłania danych (do 2 MB/s) kosztem zmniejszenia zasięgu, a także czterokrotne zwiększenie zasięgu kosztem zmniejszenie prędkości; ponadto wprowadzono szereg usprawnień dotyczących jednoczesnej pracy dużej liczby podłączonych urządzeń.
- Bluetooth v 5.1. Odświeżenie opisanej powyżej wersji v 5.0. Oprócz ogólnych ulepszeń w jakości i niezawodności łączności, w tej wersji wprowadzono tak interesującą funkcję jak określenie kierunku, z którego dociera sygnał Bluetooth. Dzięki temu możliwe staje się określenie lokalizacji podłączonych urządzeń z dokładnością do centymetra, co może być przydatne np. przy wyszukiwaniu słuchawek bezprzewodowych.
- Bluetooth v 5.2. Następne, po 5.1, odświeżenie Bluetooth 5. generacji. Główne nowości w tej wersji to szereg ulepszeń w zakresie bezpieczeństwa, dodatkowa optymalizacja mocy w trybie LE oraz nowy format sygnału audio dla synchronizacji odtwarzania równoległego na kilku urządzeniach.
- Bluetooth v 5.3. Protokół łączności bezprzewodowej Bluetooth v 5.3, wprowadzony do użytku na początku 2022 roku. Przyspieszono w nim proces negocjacji kanału łączności między sterownikiem a urządzeniem, zaimplementowano funkcję szybkiego przełączania się między stanem pracy w małym cyklu roboczym a trybem wysokiej prędkości, poprawiono przepustowość i stabilność połączenia poprzez zmniejszenie podatności na zakłócenia. W przypadku nieoczekiwanych zakłóceń w trybie pracy Low Energy przyśpieszono procedurę wyboru kanału łączności do przełączenia. W protokole 5.3 nie ma fundamentalnych nowości, lecz widać w nim szereg usprawnień jakościowych.
- Bluetooth v 5.4. W wersji 5.4 protokołu, która została wprowadzona na początku 2023 roku, zwiększono zasięg i prędkość wymiany danych, co doskonale sprawdza się w zastosowaniach wymagających komunikacji na duże odległości (np. systemy inteligentnego domu). Również w wersji Bluetooth v 5.4 poprawiono energooszczędny tryb BLE. Ta wersja protokołu wykorzystuje nowe funkcje bezpieczeństwa w celu ochrony danych przed nieautoryzowanym dostępem, posiada podwyższoną niezawodność połączenia dzięki funkcji wyboru najlepszego kanału do komunikacji oraz zapobiega utracie połączenia w przypadku zakłóceń.
— Obsługa aptX. Technologia aptX została opracowana w celu poprawy jakości dźwięku przesyłanego przez Bluetooth. Przy transmisji dźwięku w zwykłym formacie, bez aptX, sygnał jest dość mocno kompresowany, co wpływa na jakość dźwięku; nie jest to krytyczne przy rozmowie przez telefon, lecz może znacząco zepsuć wrażenie słuchania muzyki. Z kolei aptX pozwala na przesyłanie sygnału audio niemal bez kompresji i uzyskanie jakości dźwięku porównywalnej z połączeniem przewodowym. Takie cechy docenią szczególnie melomani, preferujący słuchawki Bluetooth lub głośniki bezprzewodowe. Oczywiście, aby korzystać z technologii aptX, zarówno smartfon jak i zewnętrzne urządzenie audio muszą ją wspierać.
— Obsługa aptX HD. Technologia aptX HD to dalsze rozwinięcie i udoskonalenie oryginalnej technologii aptX, umożliwiającej przesyłanie dźwięku w jeszcze wyższej jakości - Hi-Res (24 bity/48 kHz). Według twórców, standard ten pozwala osiągnąć jakość sygnału przewyższającego AudioCD oraz czystość dźwięku porównywalną do łączności przewodowej. To ostatnie jest często kwestionowane, lecz można argumentować, że ogólnie aptX HD zapewnia bardzo wysoką jakość dźwięku. Z drugiej strony wszystkie zalety tej technologii stają się widoczne dopiero przy dźwięku Hi-Res - o jakości 24-bit/48 kHz lub wyżej; w przeciwnym razie jakość jest ograniczona nie tyle cechami połączenia, ile właściwościami plików źródłowych.
— Obsługa aptX LL. Modyfikacja technologii aptX, zaprojektowana w celu maksymalizacji opóźnień transmisji sygnału. Kodowanie i dekodowanie sygnału przy przesyłaniu dźwięku przez Blueooth z aptX zajmuje jakiś czas; nie ma to krytycznego znaczenia przy słuchaniu muzyki, jednak w filmach lub grach może wystąpić zauważalny brak synchronizacji między obrazem a dźwiękiem. Technologia AptX LL nie posiada tej wady; również powoduje opóźnienie, lecz to opóźnienie okazuje się być tak małe, że osoba go nie zauważa.
— Obsługa aptX Adaptive. Dalsze rozwinięcie aptX; faktycznie łączy możliwości aptX HD i aptX Low Latency, lecz nie ogranicza się tylko do tego. Jedną z głównych cech tego standardu jest tak zwany adaptacyjny bitrate: kodek automatycznie dostosowuje rzeczywistą prędkość przesyłania danych w oparciu o cechy transmitowanych treści (muzyki, dźwięku z gier, łączności głosowej itp.) oraz obciążenie używanych częstotliwości. Pomaga to w szczególności zmniejszyć zużycie energii i poprawić niezawodność łączności; a specjalne algorytmy pozwalają na transmisję dźwięku w jakości porównywalnej z aptX HD (24 bity/48 kHz), przy kilkukrotnie mniejszej ilości przesyłanych danych. A minimalne opóźnienie transferu danych (na poziomie aptX LL) sprawia, że ten kodek jest idealny również do gier i filmów.
— Obsługa aptX Lossless. Kolejna gałąź rozwoju technologii aptX, która umożliwia przesyłanie dźwięku o jakości CD poprzez bezprzewodową sieć Bluetooth bez utraty i stosowania kompresji. Jednocześnie transmisja dźwięku o parametrach próbkowania 16 bitów / 44,1 kHz realizowana jest z przepływnością około 1,4 Mbit/s – czyli około trzykrotnie szybciej niż w aptX Adaptive. Obsługę aptX Lossless zaczęto wprowadzać pod koniec 2021 roku w ramach inicjatywy Qualcomm Snapdragon Sound, która jest dostępna na smartfonach, słuchawkach i głośnikach z procesorem Snapdragon 8 Gen 1 i nowszych.
— Chip NFC. NFC to technologia łączności bezprzewodowej na bardzo małe odległości, do 10 cm. Jednym z najpopularniejszych wariantów zastosowania tej technologii w smartfonach są płatności zbliżeniowe, gdy urządzenie faktycznie pełni rolę karty płatniczej: wystarczy zbliżyć urządzenie do terminalu z obsługą technologii zbliżeniowych, takich jak PayPass czy PayWave. Innym popularnym sposobem korzystania z NFC jest automatyczne łączenie się z innym urządzeniem obsługującym NFC przez Wi-Fi lub Bluetooth: gadżety zbliżone do siebie automatycznie nawiązują połączenie, a użytkownik musi je tylko potwierdzić. Technicznie możliwe są również inne warianty: rozpoznawanie kart inteligentnych i tagów RFID, wykorzystanie urządzenia jako biletu komunikacji miejskiej, karty dostępu itp. Jednak takie formaty użytkowania są znacznie mniej powszechne.
— Port podczerwieni. Port podczerwieni wygląda jak małe "oczko", znajdujące się zwykle w górnej części telefonu. Wyposażenie to pozwala zamienić telefon w pilot do sterowania różnymi urządzeniami - wystarczy zainstalować odpowiednią aplikację. Warto zaznaczyć, że wśród takich aplikacji można znaleźć wariant dla niemal każdego urządzenia - od telewizorów przez klimatyzatory po okapy itp. W związku z tym, „pilot smartfon” okazuje się być bardzo uniwersalny.
— Krótkofalówka. Wbudowany moduł łączności radiowej, pozwalający na wykorzystanie telefonu jako krótkofalówki - do komunikowania się na stosunkowo krótkie odległości bez użycia karty SIM. Oczywiście do takiej komunikacji potrzeba jeszcze jednej krótkofalówki (lub telefonu z tą funkcją). Konkretne częstotliwości obsługiwane przez wbudowany moduł radiowy należy wyjaśnić osobno; jednak wszystkie telefony z tą funkcją pracują w jednym lub kilku standardowych zakresach. W praktyce oznacza to, że są w stanie komunikować się nie tylko z podobnymi telefonami, lecz także z klasycznymi cywilnymi krótkofalówkami – z zastrzeżeniem zbieżności obsługiwanych zakresów. Zasięg komunikacji jest zwykle dość krótki; niemniej jednak wbudowane krótkofalówki mogą być bardzo przydatne w sytuacjach, w których konwencjonalna łączność komórkowa jest nieskuteczna lub niedostępna. Typowymi przykładami takich sytuacji są przebywanie „z dala od cywilizacji”, w rejonie o słabym zasięgu lub podróżowanie za granicę, gdzie roaming jest drogi.
— Łączność satelitarna. Funkcja łączności satelitarnej ma na celu wysyłanie zgłoszeń alarmowych do służb ratowniczych w sytuacjach awaryjnych. Smartfony z możliwością łączenia się z częstotliwościami satelitarnymi mogą komunikować się ze służbami ratunkowymi w obszarach, gdzie nie ma zasięgu sieci komórkowej. Dla lepszego odbioru sygnału z satelitów pożądane jest, aby użytkownik znajdował się na otwartej przestrzeni. Aktualna wersja funkcji zakłada przekazywanie tylko gotowych komunikatów. W przyszłości planowana jest obsługa pełnowartościowej wymiany wiadomościami za pośrednictwem łączności satelitarnej, jednak będzie za to pobierana odrębna opłata.