USB A
Pełnowymiarowe
złącza USB A są popularne w technice komputerowej, są standardowo stosowane w ładowarkach adapterowych do sieci domowych 230 V oraz gniazdach samochodowych 12 V. W stacjach ładowania takie gniazda są szeroko stosowane do ładowania gadżetów.
- Ilość. Ilość pełnowymiarowych portów USB w konstrukcji stacji ładującej.
- Siła prądu. Maksymalny prąd wyjściowy przez złącze USB A do ładowanego urządzenia. Należy pamiętać, że różne porty stacji ładującej mogą generować różny prąd (na przykład 1,5 A i 2,1 A). W takim przypadku zwykle wskazywana jest najwyższa siła prądu.
- Moc. Maksymalna
moc wyjściowa w watach (W), którą stacja ładująca jest w stanie dostarczyć przez złącze USB A do jednego urządzenia ładującego.
USB type C
Porty USB typu C są mniejsze niż klasyczne porty USB, a ponadto mają wygodną odwracalną konstrukcję, która umożliwia podłączenie wtyczki w dowolnym kierunku.
USB typu C zostało pierwotnie zaprojektowane, aby móc realizować różne zaawansowane funkcje: zwiększone zasilanie, technologie szybkiego ładowania itp.
- Ilość. Ilość symetrycznych portów USB typu C w konstrukcji stacji ładującej.
- Siła prądu. Maksymalny prąd wyjściowy przez złącze USB typu C do urządzenia ładującego. Należy pamiętać, że różne porty stacji ładującej mogą generować różny prąd (na przykład 1,5 A i 2,1 A). W takim przypadku zwykle wskazywana jest najwyższa siła prądu.
- Moc. Maksymalna moc w watach (W), którą stacja ładująca jest w stanie dostarczyć do jednego ładowalnego gadżetu. Wysoka
moc wyjściowa portu USB typu C pozwala na przyspieszenie procesu ładowania. Ładowane urządzenie musi jednak obsługiwać odpowiednią moc – inaczej szybkość procesu będzie ograniczona charakterystyką gadżetu.
Z portu USB typu C
Możliwość uzupełniania energii przez stację poprzez połączenie poprzez port USB typu C. Pomimo tego, że sam port jest w większości przypadków dwukierunkowy (z transmisją sygnału w obu kierunkach), rzadko jest wykorzystywany jako wejście w stacjach ładowania.
Dodatkowe porty
Dodatkowe złącza przewidziane w konstrukcji stacji ładującej oprócz opisanych powyżej.
Typ akumulatora
—
Litowo-jonowy. Kluczową zaletę akumulatorów litowo-jonowych można nazwać dużą pojemnością przy niewielkich gabarytach i wadze. Ponadto akumulatory litowo-jonowe nie podlegają efektowi pamięci i są w stanie ładować się dość szybko. Oczywiście opcja ta nie jest pozbawiona wad – przede wszystkim to wrażliwość na niskie lub wysokie temperatury, a przy przeciążeniu akumulator litowo-jonowy może się zapalić, a nawet eksplodować. Jednak ze względu na zastosowanie wbudowanych kontrolerów prawdopodobieństwo wystąpienia takich „wypadków” jest niezwykle małe i generalnie zalety tej technologii znacznie przeważają nad wadami.
—
ŻyciePO4. Akumulatory litowo-żelazowo-fosforanowe to modyfikacja akumulatorów litowo-jonowych (patrz powiązany punkt) zaprojektowana w celu usunięcia niektórych wad oryginalnej technologii. Akumulatory LiFePO4 charakteryzują się dużą liczbą cykli ładowania/rozładowania, stabilnością chemiczną i termiczną, niską tolerancją temperaturową, krótkim czasem ładowania (w tym dużymi prądami) oraz bezpieczną eksploatacją. Prawdopodobieństwo „wybuchu” akumulatora LiFePO4 podczas przeciążenia jest zredukowane prawie do zera i generalnie takie akumulatory z łatwością radzą sobie z dużymi obciążeniami szczytowymi i utrzymują napięcie robocze prawie do samego rozładowania.
—
Li-Ion NMC. Rodzaj akumulatora litowego wykorzystującego złożony stop do pr
...odukcji katody. Zawiera nikiel, mangan i kadm. Taki „przepis” pozwala na zwiększenie mocy zasilacza opartego o elementy Li-Ion NMC. Akumulatory tego typu charakteryzują się dużą pojemnością właściwą i stabilnym napięciem rozładowania, zapewniają długi czas pracy stacji ładującej przy dużej wydajności, charakteryzują się całkowitym brakiem „efektu pamięci”, zachowaniem wydajności w szerokim zakresie temperatur oraz bezpieczeństwo przeciwpożarowe.
— VRLA. Akumulatory kwasowe z regulacyjnym zaworem bezpieczeństwa do uwalniania nadmiaru gazu. Skrót VRLA oznacza Valve Regulated Lead Acid. Akumulatory tego typu mają szczelną, nierozłączną konstrukcję i występują w dwóch rodzajach: AGM VRLA (płyty akumulatorów wyposażone są w warstwę absorbentu z włókna szklanego) oraz GEL VRLA (z elektrolitem żelowym w stanie galaretowatym). Akumulatory z zaworem regulacyjnym są odporne na głębokie rozładowania, nie wymagają uzupełniania destylatem przez cały okres eksploatacji, nie emitują wodoru i tlenuPojemność baterii
Nominalna
pojemność baterii, a właściwie ilość energii, która ma być zmagazynowana. Im większy, tym dłuższa żywotność baterii stacji ładującej, przy zachowaniu pozostałych parametrów. Z drugiej strony parametr ten wpływa również na wymiary, wagę i cenę akumulatora, mimo że nie zawsze energochłonny akumulator jest wymagany. Za pomocą wskaźnika pojemności w watogodzinach można porównać ze sobą akumulatory.
Liczba cykli ładowania
Liczba cykli ładowania i rozładowania, które akumulator może wytrzymać bez znaczącej utraty wydajności.
W trakcie eksploatacji akumulatory ulegają zużyciu, co powoduje pogorszenie ich wydajności (przede wszystkim spada pojemność). Żywotność baterii jest zwykle mierzona w cyklach ładowania i rozładowania. Jednak modele o tym samym zadeklarowanym zasobie nie zawsze są w praktyce równie trwałe. Różni producenci mogą interpretować „znaczną utratę wydajności” na różne sposoby: na przykład jedna marka wskazuje zasób do 20% spadku wydajności (DOD > 80%), inna - do 60% spadku (DOD > 40% ) Za skrótem DOD warto rozszyfrować Depth of Discharge, tj. głębokość rozładowania. Dlatego przy wyborze warto skupić się nie tylko na czystych liczbach, ale także na innych źródłach - wynikach testów, recenzjach itp. Należy również pamiętać, że żywotność baterii może ulec znacznemu skróceniu, jeśli zostaną naruszone warunki pracy (na przykład w przypadku przegrzania lub hipotermii).
Czas ładowania (gniazdo) ≈
Czas ładowania przenośnej elektrowni ze stanu całkowitego rozładowania do 100% naładowania przy zasilaniu z gniazdka domowego. Chodzi o oryginalny akumulator i kompletną ładowarkę.
Czas ładowania (panel fotowoltaiczny) ≈
Czas spędzony na pełnym naładowaniu podczas korzystania z oryginalnego panelu w jasnym świetle słonecznym. W pochmurną pogodę czas ładowania urządzenia z panelu fotowoltaicznego może być uderzająco różny w dół.