Pojemność
Pojemność nominalna to jeden z kluczowych parametrów dysku twardego, określający, ile informacji może się na nim zmieścić. W przypadku dysków SSHD ta pozycja wskazuje pojemność tylko dysku twardego, a w przypadku macierzy RAID — całkowitą pojemność macierzy.
Ilość informacji we współczesnym świecie stale rośnie i wymaga coraz pojemniejszych urządzeń pamięci masowej. Dlatego w większości przypadków warto wybrać większy dysk. W rzeczywistości kwestia wyboru według tego parametru często zależy tylko od ceny: koszt napędu zależy bezpośrednio od pojemności.
Jeśli pytanie brzmi w ten sposób, że trzeba wybrać dysk „mniejszy i tańszy, ale wystarczający”, warto ocenić ilość informacji, z którymi mamy do czynienia, oraz specyfikę jej użytkowania. Na przykład dla zwykłego komputera biurowego przeznaczonego głównie do pracy z dokumentami dysk wewnętrzny o pojemności
2 TB, a nawet
1 TB będzie więcej niż wystarczający, a entuzjastyczny gracz będzie potrzebował
4 TB,
6 TB, a nawet
8 TB nie będzie zbędny. Jeśli używasz dysku do nagrywania z kamer, możesz kupić
dysk HDD o pojemności 10 TB,
12 TB,
14 TB,
16 TB,
18 TB lub więcej.
Gwarancja producenta
Gwarancja producenta na ten model.
W rzeczywistości jest to minimalna żywotność obiecana przez producenta, z zastrzeżeniem zasad działania. Najczęściej rzeczywista żywotność urządzenia jest znacznie dłuższa niż gwarantowana.
Pojemność bufora
Wielkość własnej pamięci RAM dysku twardego. Ta pamięć jest pośrednim ogniwem między szybką pamięcią o dostępie swobodnym komputera a stosunkowo powolną mechaniką odpowiedzialną za odczytywanie i zapisywanie informacji na talerzach dysków. W szczególności bufor służy do przechowywania najczęściej żądanych danych z dysku, skracając w ten sposób czas dostępu do nich.
Technicznie rzecz biorąc, rozmiar bufora wpływa na prędkość dysku twardego - im większy bufor, tym szybszy jest dysk. Jednak wpływ ten jest raczej znikomy, a na poziomie ludzkiej percepcji znaczna różnica w wydajności jest zauważalna tylko wtedy, gdy wielkość bufora obu dysków różni się wielokrotnie – na przykład
8 MB i
64 MB.
Prędkość obrotowa
W przypadku dysków używanych w komputerach stacjonarnych (patrz „Przeznaczenie”) standardowe prędkości to
5400 obr./min (normalna) i
7200 obr./min (podwyższona). Dostępne są również
bardziej specyficzne opcje, w tym modele z możliwością dostosowania prędkości w zależności od obciążenia. Z kolei w dyskach serwerowych mogą się stosować wyższe prędkości –
10 000 obr./min, a nawet
15 000 obr./min.
Prędkość przesyłu danych
Prędkość przesyłu danych między dyskiem a urządzeniami klienckimi zależy od typu napędu, prędkości obrotowej, rozmiaru bufora pamięci i złączy połączeniowych. Ostatni parametr jest najważniejszy, ponieważ nie da się przekroczyć przepustowości konkretnego interfejsu.
Średni czas dostępu
Czas, jaki zajmuje mechanice dysku twardego znalezienie losowych żądanych danych do odczytu. Dla każdego konkretnego przypadku czas wyszukiwania jest inny, ponieważ zależy od lokalizacji danych na powierzchni dysku i położenia głowicy odczytu, dlatego średnia wartość jest wskazywana w specyfikacji dysków twardych. Im krótszy średni czas dostępu, tym szybciej dysk działa, przy pozostałych warunkach równych.
Pobór mocy w trybie pracy
Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.
Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.
Pobór mocy w trybie czuwania
Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.
Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).
Odporność na wstrząsy w trakcie pracy
Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.