Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie MSI MAG B550 TOMAHAWK MAX WIFI vs Asus ROG STRIX B550-F GAMING WIFI II

Dodaj do porównania
MSI MAG B550 TOMAHAWK MAX WIFI
Asus ROG STRIX B550-F GAMING WIFI II
MSI MAG B550 TOMAHAWK MAX WIFIAsus ROG STRIX B550-F GAMING WIFI II
Porównaj ceny 16Porównaj ceny 11
TOP sprzedawcy
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketAMD AM4AMD AM4
FormatATXATX
Fazy zasilania
13 /10+2+1/
14
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaMSI Mystic Light SyncAsus Aura Sync
Wymiary (WxS)305x244 mm305x244 mm
Chipset
ChipsetAMD B550AMD B550
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania5100 MHz5100 MHz
Maks. wielkość pamięci128 GB128 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.2 szt.
Interfejs M.2
1xSATA/PCI-E 4x, 1xPCI-E 4x /M2_1 PCI-E 4.0/
2xSATA/PCI-E 4x
Chłodzenie dysku SSD M.2
Zintegrowany kontroler RAID
 /Raid 0, 1, 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x2 szt.3 szt.
Liczba gniazd PCI-E 16x2 szt.2 szt.
Tryby PCI-E16x/4x16x/4x
Obsługa PCI Express4.04.0
Obsługa CrossFire (AMD)
Stalowe złącza PCI-E
Złącza na płycie głównej
Moduł TPM
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
USB C 3.2 gen11 szt.
Złącze Thunderbolt AICv4 1 szt.
ARGB LED strip2 szt.
1 szt. /Addressable Gen 2/
RGB LED strip2 szt.
2 szt. /Aura RGB/
Cechy dodatkoweChassis IntrusionThermal sensor
Wyjścia wideo
Wyjście HDMI
Wersja HDMIv.2.1v.2.1
DisplayPort
Wersja DisplayPortv.1.4
Zintegrowany układ audio
Układ audioRealtek ALC897
ROG SupremeFX /Realtek S1220A/
WzmacniaczDual OP Amplifiers
Dźwięk (liczba kanałów)7.17.1
Optyczne S/P-DIF
Interfejsy sieciowe
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
BluetoothBluetooth v 5.2Bluetooth v 5.2
LAN (RJ-45)2.5 Gb/s2.5 Gb/s
Liczba portów LAN1 szt.2 szt.
Kontroler LANRealtek RTL8125BIntel I225-V
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen12 szt.4 szt.
USB 3.2 gen21 szt.1 szt.
USB C 3.2 gen21 szt.1 szt.
PS/21 szt.
BIOS FlashBack
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8+4 pin
Liczba złączy wentylatorów CPU8 szt.6 szt.
CPU Fan 4-pin1 szt.2 szt.
CPU/Water Pump Fan 4-pin1 szt.1 szt.
Chassis/Water Pump Fan 4-pin6 szt.3 szt.
Data dodania do E-Kataloggrudzień 2022kwiecień 2022

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Synchronizacja podświetlenia

Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).

Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Specyficzne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Liczba gniazd PCI-E 1x

Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są płyty główne z 1 slotem PCI-E 1x, 2 slotami PCI-E 1x, 3 portami PCI-E 1x i jeszcze więcej.

Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.

Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.

Moduł TPM

Specjalistyczne złącze TPM do podłączenia modułu szyfrującego.

Moduł TPM (Trusted Platform Module) umożliwia szyfrowanie danych przechowywanych na komputerze za pomocą unikalnego klucza, który jest prawie nie do złamania (jest to niezwykle trudne do zrobienia). Klucze są przechowywane w samym module i są niedostępne z zewnątrz, a dane można zabezpieczyć w taki sposób, aby ich normalne odszyfrowanie było możliwe tylko na tym samym komputerze, na którym zostały zaszyfrowane (i tym samym oprogramowaniem). Tak więc, jeśli informacje zostaną nielegalnie skopiowane, atakujący nie będzie mógł uzyskać do nich dostępu, nawet jeśli oryginalny moduł TPM z kluczami szyfrowania zostanie skradziony: TPM rozpozna zmianę systemu i nie pozwoli na odszyfrowanie.

Z technicznego punktu widzenia moduły szyfrujące mogą być wbudowane bezpośrednio na płyty główne, jednak nadal bardziej uzasadnione jest uczynienie ich oddzielnymi urządzeniami: wygodniej jest kupić moduł TPM w razie potrzeby, zamiast przepłacać za natywnie wbudowaną funkcję, która może okazać się niepotrzebna. Z tego powodu istnieją płyty główne bez złącza TPM.

USB C 3.2 gen1

Liczba złączy USB-C 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB-C (wszystkie wersje) służą do podłączenia do płyty głównej portów USB-C znajdujących się na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB-C znajdujących się w obudowie, które jest w stanie obsłużyć.

Przypomnijmy, że USB-C to stosunkowo nowy typ złącza USB, wyróżnia się niewielkimi rozmiarami i dwustronną konstrukcją; takie złącza mają swoje własne cechy techniczne, dlatego należy zapewnić dla nich odpowiednie gniazda. W szczególności USB 3.2 gen1 (wcześniej znane jako USB 3.1 gen1 i USB 3.0) zapewnia szybkość przesyłania danych do 4,8 Gb/s. Dodatkowo na złączu USB-C ta wersja złącza może obsługiwać technologię USB Power Delivery, która umożliwia zasilanie urządzeń zewnętrznych o mocy do 100 W; jednakże funkcja ta nie koniecznie musi występować, jej obecność w złączach danej płyty głównej należy sprawdzać osobno.

Złącze Thunderbolt AIC

5-pinowe złącze do podłączenia karty rozszerzeń. To z kolei zapewnia dużą szybkość wymiany danych (do 40 Gbps), możliwość podłączenia zewnętrznych monitorów, szybkie ładowanie kompatybilnych urządzeń itp.

ARGB LED strip

Złącze do podłączenia adresowalnej taśmy LED jako dekoracyjnego podświetlenia obudowy komputera. Ten rodzaj „inteligentnej” taśmy bazuje na specjalnych diodach LED, z których każda składa się z oprawy LED oraz zintegrowanego sterownika, co pozwala na elastyczne sterowanie luminancją za pomocą specjalnego protokołu cyfrowego i tworzenie oszałamiających efektów.

Wersja DisplayPort

Wersja interfejsu DisplayPort (patrz wyżej) zainstalowana na płycie głównej.

— v.1.2. Najstarsza z stosowanych obecnie wersji (2010 rok). To właśnie w niej po raz pierwszy pojawiła się obsługa 3D, możliwość pracy ze złączem miniDisplayPort, a także opcja szeregowego łączenia wielu ekranów do jednego portu (daisy chain). Maksymalna rozdzielczość, w pełni obsługiwana przez v.1.2 — 5K przy 30 klatkach na sekundę, z pewnymi ograniczeniami jest również obsługiwane wideo 8K. A aktualizacja v.1.2a, wprowadzona w 2013 roku, dodała kompatybilność z technologią FreeSync stosowaną w kartach graficznych AMD.

— v.1.3. Aktualizacja standardu DisplayPort wydana w 2014 roku. Dzięki zwiększonej przepustowości możliwe było zapewnienie pełnej obsługi wideo 8K (przy 30 klatkach na sekundę), a w standardach 4K i 5k zwiększenie maksymalnej liczby klatek na sekundę odpowiednio do 120 i 60 klatek na sekundę. Kolejną kluczową aktualizacją była Funkcja Dual-mode, która zapewnia kompatybilność z interfejsami HDMI i DVI za pośrednictwem najprostszych pasywnych adapterów.

— v.1.4. Najnowsza wersja z szeroko rozpowszechnionych. Przepustowość została jeszcze bardziej zwiększona (prawie o połowę w porównaniu z v.1.2, co pozwoliło, choć z pewnymi ograniczeniami, wysyłać 4K i 5K-sygnał wideo z szybkością do 240 kl./s i 8K — do 144 kl./s. Oprócz tego, dodano obsługę szeregu specjalnych funkcji, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów dźwięku wzrosła do 32.
Dynamika cen
MSI MAG B550 TOMAHAWK MAX WIFI często porównują
Asus ROG STRIX B550-F GAMING WIFI II często porównują