Tryb nocny
Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Apple Mac mini 2023 Z170000G4 vs Apple Mac Studio 2022 Z14K000AY

Dodaj do porównania
Apple Mac mini 2023 (Z170000G4)
Apple Mac Studio 2022 (Z14K000AY)
Apple Mac mini 2023 Z170000G4Apple Mac Studio 2022 Z14K000AY
od 15 299 zł
Produkt jest niedostępny
od 41 399 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Zaktualizowany procesor M2, Procesor multimediów H.264, HEVC, ProRes i ProRes RAW z akceleracją sprzętową.
Procesor Apple M1 Ultra ma 32 rdzenie Neural Engine.
Rodzajnettopnettop
Procesor
Rodzajmobilnymobilny
SeriaApple M2 ProApple M1 Ultra
Liczba rdzeni1220
Częstotliwość taktowania3.2 GHz
Pamięć RAM
Pojemność pamięci RAM32 GB128 GB
Liczba bankówpamięć wlutowanapamięć wlutowana
Karta graficzna
Rodzaj karty graficznejzintegrowanazintegrowana
Model karty graficznejApple M2 Pro 19-CoreApple M1 Ultra 48-Core
Dysk
Rodzaj dyskuSSDSSD
Pojemność dysku2048 GB8192 GB
Tylny panel
Złącza
wyjście HDMI
wyjście HDMI
USB 3.2 gen12 szt.
USB 3.2 gen22 szt.
USB44 szt.4 szt.
Interfejs Thunderboltv4 4 szt.v4 4 szt.
Obsługa Alternate Mode
Liczba obsługiwanych monitorów35
Przedni panel
Napędbrakbrak
mini-Jack (3,5 mm)
USB42 szt.
Interfejs Thunderboltv4 2 szt.
Czytnik kart pamięci
Multimedia
LAN (RJ-45)1 Gb/s10 Gb/s
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6 (802.11ax)
Bluetooth++
Wbudowane głośniki
Dane ogólne
Moc zasilacza185 W370 W
Preinstalowany system operacyjnyMacOSMacOS
Materiał obudowyaluminiumaluminium
Wymiary (WxSxG)36x197x197 mm95x197x197 mm
Waga1.2 kg3.6 kg
Kolor obudowy
Data dodania do E-Katalogstyczeń 2023kwiecień 2022

Seria

Głównymi producentami procesorów w dzisiejszych czasach są Intel i AMD, a w 2020 roku swoje procesory z serii M1 zaprezentowała również firma Apple (z dalszym rozwinięciem w postaci M1 Max i M1 Ultra), kilka lat później zaprezentowawszy drugą serię M2 (M2 Pro, M2 Max, M2 Ultra) oraz trzecią M3 Lista aktualnych serii Intela obejmuje Atom, Celeron, Pentium, Core i3, Core i5, Core i7, Core i9, Core Ultra 9 oraz Xeon. Dla AMD z kolei ta lista wygląda tak: AMD Athlon, AMD FX, Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9 i Ryzen Threadripper.

Ogólnie rzecz biorąc, każda seria obejmuje procesory różnych generacji, podobne...pod względem ogólnego poziomu i pozycjonowania. Oto bardziej szczegółowy opis każdej z opisanych powyżej opcji:

— Atom. Procesory pierwotnie zaprojektowane dla urządzeń mobilnych. W związku z tym charakteryzują się kompaktowością, wysoką wydajnością energetyczną i niskim wytwarzaniem ciepła, jednak nie są specjalnie wydajne. Idealnie przystosowane do mikrokomputerów (patrz „Rodzaj”), a wśród bardziej „wielkoformatowych” systemów są niezwykle rzadkie - najczęściej w najskromniejszych konfiguracjach.

— Celeron. Procesory z niskiej półki cenowej, najprostsze i najtańsze układy klasy konsumenckiej firmy Intel dla komputerów stacjonarnych, o stosownych parametrach.

— Pentium. Rodzina niedrogich procesorów desktopowych Intel, nieco bardziej zaawansowana niż Celeron, jednak gorsza od serii Core i*.
br> — Core i3. Najprostsza i najtańsza seria wśród procesorów desktopowych Core firmy Intel, zawiera budżetowe i niedrogie układy średniej klasy, które jednak przewyższają „Celerony” i „Pentiumy”.

— Core i5. Rodzina procesorów Intel Core średniej klasy; ogólnie układy z tej serii można przypisać do średniego poziomu według standardów systemów stacjonarnych.

— Core i7. Seria wysokowydajnych procesorów, które od dawna znajdują się na szczycie wśród układów Core; dopiero w 2017 roku straciła tę pozycję na rzecz rodziny i9. Jednak obecność procesora i7 nadal oznacza dość potężną i zaawansowaną konfigurację; w szczególności takie procesory znajdują się w komputerach All-In-One klasy premium, a także są dość popularne w systemach do gier.

— Core i9. Najlepsza seria wśród procesorów Core, najmocniejsza wśród układów ogólnego przeznaczenia firmy Intel do komputerów stacjonarnych. W szczególności liczba rdzeni nawet w najskromniejszych modelach wynosi co najmniej 6. Takie układy są używane głównie w komputerach do gier.

— Xeon. Wysokiej klasy procesory Intel, możliwości których wykraczają poza standardowe układy do komputerów stacjonarnych. Zaprojektowane do użytku specjalistycznego, wśród komputerów stacjonarnych znajdują się głównie w wydajnych stacjach roboczych.

— AMD FX. Rodzina procesorów AMD, pozycjonowana jako wysokowydajne i jednocześnie niedrogie rozwiązania - w tym dla systemów do gier. Co ciekawe, niektóre modele są standardowo dostarczane z chłodzeniem wodnym.

— Ryzen 3. Układy AMD Ryzen (wszystkie serie) są sprzedawane jako wysokiej klasy rozwiązania dla graczy, programistów, grafików i edytorów wideo. To właśnie wśród tych układów AMD zapoczątkowało mikroarchitekturę Zen, która wprowadziła jednoczesną wielowątkowość, co znacznie zwiększyło liczbę operacji na cykl przy tej samej częstotliwości taktowania. A Ryzen 3 to najtańsza i najskromniejsza pod względem właściwości rodzina wśród „Ryzenów”. Takie procesory są produkowane przy użyciu tych samych technologii, co starsze serie, jednak w Ryzen 3 połowa rdzeni obliczeniowych jest dezaktywowana. Niemniej jednak w tej linii znajdują się dość wydajne modele, w tym te przeznaczone do konfiguracji gier i stacji roboczych.

— Ryzen 5. Rodzina procesorów Ryzen ze średniej półki. Druga seria na tej architekturze, wydana w kwietniu 2017 roku jako tańsza alternatywa dla układów Ryzen 7. Układy Ryzen 5 mają nieco skromniejszą wydajność (w szczególności niższe taktowanie i, w niektórych modelach, pamięć podręczną L3). Poza tym są one całkowicie podobne do „siódemki” i są również pozycjonowane jako wysokowydajne układy do gier i stacji roboczych.

— Ryzen 7. Historycznie pierwsza seria procesorów AMD oparta na mikroarchitekturze Zen (zobacz „Ryzen 3” powyżej, aby uzyskać więcej szczegółów). Jedna ze starszych rodzin wśród „Ryzenów”, pod względem wydajności ustępuje jedynie linii Threadripper; wiele komputerów stacjonarnych opartych na tych układach to modele do gier.

— Ryzen 9. Debiut procesorów AMD Ryzen 9 opartych na mikroarchitekturze Zen miał miejsce w 2019 roku. Seria ta stała się topową wśród wszystkich Ryzenów, wypierając Ryzena 7 ze szczytu podium. Pierwsze modele Ryzen 9 miały 12 rdzeni i 24 wątki, później liczba ta została zwiększona do 16 i 32. Procesory z tej linii są zwykle używane do zadań profesjonalnych: projektowania, edycji wideo, renderowania 3D, gier, streamingu oraz innych zastosowań wymagających dużej mocy obliczeniowej.

— Ryzen Threadripper. Specjalistyczne procesory klasy Hi-End zaprojektowane z myślą o maksymalnej wydajności. Montowane są głównie w systemach do gier i stacjach roboczych.

— Apple M1. Seria procesorów firmy Apple wprowadzona w listopadzie 2020 r. Należą do rozwiązań mobilnych (patrz „Rodzaj” powyżej), są wykonywane zgodnie ze schematem system-on-chip: pojedynczy moduł łączy procesor, kartę graficzną, pamięć RAM (w pierwszych modelach - 8 lub 16 GB), półprzewodnikowy dysk NVMe i kilka innych komponentów (w szczególności kontrolery Thunderbolt 4). W związku z tym wśród komputerów stacjonarnych głównym obszarem zastosowania takich układów są kompaktowe nettopy. Jeśli chodzi o specyfikacje, w oryginalnych konfiguracjach procesory M1 są wyposażone w 8 rdzeni - 4 wydajne i 4 ekonomiczne; te ostatnie, według ich twórców, zużywają 10 razy mniej energii niż te pierwsze. To, w połączeniu z pięcionanometrowym procesem technologicznym, zaowocowało jednocześnie bardzo wysoką energooszczędnością i wydajnością.

— Apple M1 Max. Bezkompromisowo potężny SoC z naciskiem na maksymalizację wydajności komputera stacjonarnego Apple przy wykonywaniu skomplikowanych zadań. Linia Apple M1 Max została wprowadzona jesienią 2021 roku, zadebiutowała na pokładzie komputerów Mac Studio.

Apple M1 Max składa się z 10 rdzeni: 8 z nich są wydajne, a 2 kolejne energooszczędne. Maksymalna ilość wbudowanej połączonej pamięci sięga 64 GB, „pułap” jej przepustowości to 400 GB/s. Wydajność graficzna wersji Max systemu jednoukładowego M1 jest około dwa razy większa niż Apple M1 Pro. Układ zawiera ponad 57 miliardów tranzystorów. Do jego konstrukcji wprowadzono również dodatkowy akcelerator dla profesjonalnego kodeka wideo ProRes, który umożliwia łatwe odtwarzanie wielu strumieni wysokiej jakości wideo ProRes w rozdzielczościach kadru 4K i 8K.

— Apple M1 Ultra. Formalnie chip M1 Ultra składa się z dwóch procesorów Apple M1 Max opartych na UltraFusion, co pozwala na przesyłanie informacji z prędkością do 2,5 Tb/s. W języku liczb ten tandem składa się z 20 rdzeni obliczeniowych ARM (16 wysokowydajnych i 4 energooszczędne), 64-rdzeniowego podsystemu graficznego i 32-rdzeniowej jednostki obliczeń neuronowych. System na czipie obsługuje do 128 GB łącznej pamięci. W obudowie procesora znajduje się około 114 miliardów tranzystorów. Głównym przeznaczeniem Apple M1 Ultra jest pewna praca ze złożonymi aplikacjami, intensywnie korzystającymi z zasobów w rodzaju przetwarzania wideo 8K lub renderowania 3D. W życiu procesor można ujrzeć na pokładzie komputerów stacjonarnych Mac Studio.

Oprócz serii opisanych powyżej, we współczesnych komputerach stacjonarnych można znaleźć następujące procesory:

AMD Fusion A4. Cała rodzina procesorów Fusion została pierwotnie zaprojektowana jako urządzenia ze zintegrowaną kartą graficzną, które łączą jednostkę centralną i kartę graficzną w jednym układzie; takie układy nazywane są APU - Accelerated Processing Unit. Serie z oznaczeniem „A” są wyposażone w najpotężniejszą zintegrowaną grafikę w rodzinie, która w niektórych przypadkach może konkurować na równi z niedrogimi dedykowanymi kartami graficznymi. Im wyższa liczba w oznaczeniu serii, tym jest bardziej zaawansowana ona jest; A4 to najskromniejsza seria Fusion A.

AMD Fusion A6. Seria procesorów z linii Fusion A jest stosunkowo skromna, jednak nieco bardziej zaawansowana niż A4. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A8. Dość zaawansowana seria procesorów Fusion A, średnia opcja pomiędzy stosunkowo skromnymi A4 i A6, a high-endowymi A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A9. Kolejna zaawansowana seria z rodziny Fusion A, nieco gorsza tylko od serii A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A10. Jedna z najlepszych serii w linii Fusion A. Aby zapoznać się z ogólnymi właściwościami tej linii, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A12. Topowa seria z linii APU Fusion A, wprowadzona w 2015 roku; pozycjonuje się jako profesjonalne procesory z zaawansowanymi (nawet według standardów APU) możliwościami graficznymi. Aby zapoznać się z ogólnymi właściwościami linii Fusion A, zobacz AMD Fusion A4 powyżej.

— Seria AMD E. Ta seria procesorów należy do APU, podobnie jak opisana powyżej Fusion A, jednak zasadniczo różni się specjalizacją: głównym obszarem zastosowania serii E są urządzenia kompaktowe, w przypadku komputerów stacjonarnych — głównie nettopy (patrz „Rodzaj”). W związku z tym procesory te charakteryzują się kompaktowością, niskim rozpraszaniem ciepła i zużyciem energii, jednak ich moc obliczeniowa jest również niska.

— Athlon X4. Seria niedrogich procesorów klasy konsumenckiej, pierwotnie wydanych w 2015 roku jako stosunkowo niedrogie i jednocześnie stosunkowo wydajne rozwiązania dla gniazda FM+.

— AMD G. Rodzina ultrakompaktowych i energooszczędnych procesorów AMD, wykonanych na zasadzie „system na chipie” (SoC). W przeciwieństwie do wielu podobnych układów wykorzystuje architekturę x86, a nie ARM. Pozycjonuje się jako rozwiązanie dla urządzeń z naciskiem na grafikę, w szczególności do gier. Nie ma jednak mowy o komputerach stacjonarnych do gier: podobnie jak większość procesorów o podobnej specyfikacji, AMD G występuje głównie w cienkich klientach (patrz „Rodzaj”).

— VIA. Procesory firmy o tej samej nazwie, związane głównie z energooszczędnymi rozwiązaniami „mobilnymi” – w szczególności wiele modeli VIA jest bezpośrednio porównywanych do Intel Atom. Jednak pomimo skromnej wydajności takie procesory można znaleźć nawet wśród systemów stacjonarnych; a w przyszłości firma planuje stworzyć pełnowartościowe układy do komputerów stacjonarnych, konkurując z AMD i Intel.

— ARM Cortex-A. Grupa procesorów firmy ARM - twórcy mikroarchitektury o tej samej nazwie i największego producenta układów na niej opartych. Cechą tej mikroarchitektury w porównaniu z klasyczną x86 jest tzw. zredukowany zestaw instrukcji (RISC): procesor działa z uproszczonym zestawem instrukcji. To nieco ogranicza funkcjonalność, jednak pozwala na tworzenie bardziej kompaktowych, „zimnych” i jednocześnie wydajnych układów. Z wielu powodów architektura ARM jest wykorzystywana głównie w procesorach „mobilnych” przeznaczonych dla smartfonów, tabletów itp. To samo dotyczy serii ARM Cortex-A; takie procesory są rzadko instalowane w komputerach stacjonarnych i zwykle chodzi o kompaktowe, skromne urządzenie, takie jak „cienki klient” (patrz „Rodzaj”).

— nVidia Tegra. Początkowo procesory te zostały stworzone z myślą o urządzeniach przenośnych, jednak ostatnio zaczęto je instalować na komputerach stacjonarnych, głównie w komputerach All-In-One. Są to urządzenia typu „system-on-chip”, które wykorzystują nie „desktopową” architekturę x86, a „mobilną” ARM, co wymaga użycia odpowiednich systemów operacyjnych; najczęściej używane przez system Android (patrz „Preinstalowany system operacyjny”).

— Armada. Kolejna odmiana procesorów w architekturze ARM, pozycjonowana jako wysokowydajne rozwiązania do przetwarzania w chmurze i serwerów domowych, w tym NAS. Występuje w pojedynczych modelach „cienkich klientów” (patrz „Rodzaj”).

— Tera. Wyspecjalizowana rodzina procesorów zaprojektowana specjalnie dla „cienkich klientów” (patrz „Rodzaj”) i zasadniczo różni się od klasycznych procesorów (zarówno pełnowymiarowych, jak i kompaktowych). Systemy oparte na Tera są zwykle pełnoprawnymi „klientami zerowymi” (zero client), absolutnie niezdolnymi do samodzielnej pracy. Innymi słowy są to urządzenia przeznaczone do tworzenia „wirtualnego pulpitu”: użytkownik pracuje z interfejsem i urządzeniami końcowymi (monitor, klawiatura, mysz itp.), jednak wszystkie operacje odbywają się na serwerze. Pozwala to na zwiększenie bezpieczeństwa podczas pracy z danymi wrażliwymi. Jednak w bardziej tradycyjnych komputerach stacjonarnych procesory Tera są prawie nie do stosowania.

Przestarzałe serie procesorów, które nadal można spotkać w użyciu (jednak nie w sprzedaży), obejmują Sempron, Phenom II i Athlon II firmy AMD oraz Core 2 Quad i Core 2 Duo firmy Intel.

Zwróć uwagę, że w sprzedaży są konfiguracje, które nie są wyposażone w procesor - z myślą, że użytkownik może go wybrać według własnego uznania; jest to jednak dość rzadka opcja.

Liczba rdzeni

Liczba rdzeni w procesorze dostarczanym w zestawie z komputerem stacjonarnym.

Rdzeń jest częścią procesora przeznaczoną do przetwarzania jednego wątka poleceń (a czasami więcej, w takich przypadkach patrz „Liczba wątków”). W związku z tym obecność kilku rdzeni pozwala procesorowi pracować jednocześnie z kilkoma takimi wątkami, co ma pozytywny wpływ na wydajność. Co prawda, należy pamiętać, że większa liczba rdzeni nie zawsze oznacza wyższą moc obliczeniową - wiele zależy od tego, jak zorganizowana jest interakcja między wątkami instrukcji, jakie specjalne technologie są zaimplementowane w procesorze itp. Można więc porównywać tylko liczbę układów z rdzeniami o tym samym przeznaczeniu (desktopowe, mobilne) i podobnych seriach (patrz „Procesor”).

Ogólnie rzecz biorąc, procesory jednordzeniowe praktycznie nie występują we współczesnych komputerach stacjonarnych. Dwurdzeniowe procesory są używane głównie w układach desktopowych poziomu podstawowego i średniego. Cztery rdzenie znajdują się zarówno w średnich, jak i zaawansowanych procesorach do komputerów stacjonarnych, jak i rozwiązaniach mobilnych. Sześciordzeniowe i ośmiordzeniowe procesory są typowe dla wysokowydajnych desktopowych procesorów używanych w stacjach roboczych i systemach do gier.

Częstotliwość taktowania

Szybkość zegara procesora zamontowanego w PC.

Teoretycznie wyższa częstotliwość taktowania ma pozytywny wpływ na wydajność, ponieważ pozwala procesorowi wykonywać więcej operacji w jednostce czasu. Wartość ta jest jednak dość słabo powiązana z realną wydajnością. Faktem jest, że rzeczywiste możliwości procesora silnie zależą od wielu innych czynników — architektury, pojemności pamięci podręcznej, liczby rdzeni, obsługi specjalnych instrukcji itp. Podsumowując, porównywać według tej wartości można tylko układy z tej samej lub podobnej serii (patrz „Procesor”), a najlepiej — z tej samej generacji.

Pojemność pamięci RAM

Ilość pamięci o dostępie swobodnym (pamięć główna lub RAM) dostarczonej w zestawie z komputerem.

Od tego parametru zależy bezpośrednio ogólna wydajność komputera: przy pozostałych warunkach równych, więcej pamięci RAM przyspiesza pracę, pozwala radzić sobie z bardziej zasobożernymi zadaniami i ułatwia jednoczesne wykonywanie dużej liczby procesów. Jeśli chodzi o konkretne liczby, minimalna pojemność wymagana do stabilnej pracy komputera ogólnego przeznaczenia wynosi teraz 4 GB. Dla mikrokomputerów i cienkich klientów mniejsza pojemność jest wystarczająca, podczas gdy w systemach do gier jest zainstalowanych co najmniej 8 GB. 16 GB, a tym bardziej 32 GB – to już bardzo solidne pojemności, a w najmocniejszych i wydajniejszych systemach pojawiają się wartości 64 GB i nawet więcej. Również w sprzedaży można znaleźć konfiguracje bez pamięci RAM - w przypadku takiego urządzenia użytkownik może wybrać pojemność pamięci według własnego uznania; z wielu powodów ta konfiguracja jest szczególnie popularna w nettopach.

Zwróć uwagę, że wiele nowoczesnych komputerów umożliwia zwiększenie ilości pamięci RAM, więc nie zawsze ma sens kupowanie drogiego urządzenia z dużą ilością pamięci RAM - czasami rozsądniej jest zacząć od prostszego modelu i rozszerzyć go, jeśli pojawia...się potrzeba. Możliwość uaktualnienia w takich przypadkach powinna zostać wyjaśniona oddzielnie.

Model karty graficznej

 

Pojemność dysku

Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.

Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.

Jeśli chodzi o konkretną pojemność, to wskaźniki 250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności od 250 do 500 GB są nadal uważane za raczej skromne. 501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich. 751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych, 1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność – ponad 2 TB – paradoksa...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.

USB 3.2 gen1

Liczba pełnowymiarowych złączy USB 3.2 Gen1 (wcześniejsze oznaczenie USB 3.1 Gen1 i USB 3.0) umieszczonych z tyłu komputera.

USB to najpopularniejszy współczesnie interfejs do podłączania urządzeń peryferyjnych. A liczba złączy to odpowiednio liczba urządzeń, które można jednocześnie podłączyć do tylnego panelu bez użycia rozgałęźników. Jeśli chodzi o wersję USB 3.2 Gen1, ma ona prędkość połączenia około 4,8 Gb/s. W niektórych konfiguracjach liczba takich złączy może sięgać 4 lub nawet więcej.

Warto również zauważyć, że porty tego typu mogą znajdować się również z przodu obudowy. Jednak w przypadku urządzeń peryferyjnych, które muszą być stale podłączone do komputera, wygodniej jest użyć tylnego panelu, podczas gdy przednie umiejscowienie lepiej nadaje się do częstego podłączania/odłączania.

USB 3.2 gen2

Liczba pełnowymiarowych złączy USB 3.2 Gen2 znajdujących się z tyłu komputera.

USB to najpopularniejszy nowoczesny interfejs do podłączania urządzeń peryferyjnych. A liczba złączy to odpowiednio liczba urządzeń, które można jednocześnie podłączyć do tylnego panelu bez użycia rozgałęźników. Wersja, wcześniej znana jako USB 3.1 i USB 3.1 Gen2, teraz oficjalnie nazywa się USB 3.2 Gen2. Maksymalna prędkość przesyłania danych w tej wersji sięga 10 Gb/s, a przy wsparciu dla funkcji USB Power Delivery, poprzez ten port można zasilać urządzenia zewnętrzne o mocy do 100 watów.

Oddzielnie należy zauważyć, że porty tego typu mogą znajdować się na przedniej stronie obudowy. Jednak w przypadku urządzeń peryferyjnych, które muszą być stale podłączone do komputera, wygodniej jest użyć tylnego panelu, podczas gdy przednie umiejscowienie lepiej nadaje się do częstego podłączania/odłączania.

Liczba obsługiwanych monitorów

Maksymalna liczba monitorów, które można jednocześnie podłączyć do komputera i udostępnić.

Jednoczesne podłączenie kilku ekranów pozwala na poszerzenie przestrzeni wizualnej dostępnej dla użytkownika. Na przykład może być przydatne dla projektantów i metrampaży podczas pracy z materiałami wielkoformatowymi, dla programistów - do rozdzielania zadań (jeden monitor do pisania kodu, drugi do wyszukiwania potrzebnych informacji i innych celów pomocniczych) oraz dla graczy-entuzjastów - do zapewnienia maksymalnego efektu zanurzenia.
Dynamika cen
Apple Mac mini 2023 często porównują